After fine-tuning, access the new model using ONNX Runtime GenAI.
pip install numpy -U
pip install onnxruntime-genai
Use the following code to perform inference with your fine-tuned model:
import onnxruntime_genai as og
model = og.Model('Your onnx model folder location')
tokenizer = og.Tokenizer(model)
tokenizer_stream = tokenizer.create_stream()
search_options = {"max_length": 1024,"temperature":0.3}
params = og.GeneratorParams(model)
params.try_use_cuda_graph_with_max_batch_size(1)
params.set_search_options(**search_options)
prompt = "prompt = "<|user|>Who are you not allowed to marry in the UK?<|end|><|assistant|>""
input_tokens = tokenizer.encode(prompt)
params.input_ids = input_tokens
generator = og.Generator(model, params)
while not generator.is_done():
generator.compute_logits()
generator.generate_next_token()
new_token = generator.get_next_tokens()[0]
print(tokenizer_stream.decode(new_token), end='', flush=True)
Run the above code to test the inference and observe the generated output.