-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
executable file
·222 lines (173 loc) · 6.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import time, torch
from argparse import ArgumentTypeError
from prefetch_generator import BackgroundGenerator
import logging
class WeightedSubset(torch.utils.data.Subset):
def __init__(self, dataset, indices, weights) -> None:
self.dataset = dataset
assert len(indices) == len(weights)
self.indices = indices
self.weights = weights
def __getitem__(self, idx):
if isinstance(idx, list):
return self.dataset[[self.indices[i] for i in idx]], self.weights[[i for i in idx]]
return self.dataset[self.indices[idx]], self.weights[idx]
def train(train_loader, network, criterion, model_teacher, optimizer, scheduler, epoch, args, rec, if_weighted: bool = False):
"""Train for one epoch on the training set"""
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
# switch to train mode
network.train()
if model_teacher is not None:
model_teacher.eval()
end = time.time()
for i, contents in enumerate(train_loader):
optimizer.zero_grad()
if if_weighted:
target = contents[0][1].to(args.device)
input = contents[0][0].to(args.device)
# Compute output
output = network(input)
weights = contents[1].to(args.device).requires_grad_(False)
loss = torch.sum(criterion(output, target) * weights) / torch.sum(weights)
else:
target = contents[1].to(args.device)
input = contents[0].to(args.device)
# Compute output
output = network(input)
if model_teacher is not None:
output_teacher = model_teacher(input)
loss = criterion(output, output_teacher)
losses.update(loss.item(), input.size(0))
else:
loss = criterion(output, target).mean()
losses.update(loss.data.item(), input.size(0))
# Measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
top1.update(prec1.item(), input.size(0))
# Compute gradient and do SGD step
loss.backward()
optimizer.step()
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
logging.info('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'LR {lr:.5f}'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1, lr=_get_learning_rate(optimizer)))
scheduler.step()
record_train_stats(rec, epoch, losses.avg, top1.avg, optimizer.state_dict()['param_groups'][0]['lr'])
def test(test_loader, network, criterion, epoch, args, rec):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
# Switch to evaluate mode
network.eval()
network.no_grad = True
end = time.time()
for i, (input, target) in enumerate(test_loader):
target = target.to(args.device)
input = input.to(args.device)
# Compute output
with torch.no_grad():
output = network(input)
loss = criterion(output, target).mean()
# Measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# Measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
logging.info('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(test_loader), batch_time=batch_time, loss=losses,
top1=top1))
logging.info(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
network.no_grad = False
record_test_stats(rec, epoch, losses.avg, top1.avg)
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def str_to_bool(v):
# Handle boolean type in arguments.
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise ArgumentTypeError('Boolean value expected.')
def _get_learning_rate(optimizer):
return max(param_group['lr'] for param_group in optimizer.param_groups)
def save_checkpoint(state, path, epoch, prec):
logging.info("=> Saving checkpoint for epoch %d, with Prec@1 %f." % (epoch, prec))
torch.save(state, path)
def init_recorder():
from types import SimpleNamespace
rec = SimpleNamespace()
rec.train_step = []
rec.train_loss = []
rec.train_acc = []
rec.lr = []
rec.test_step = []
rec.test_loss = []
rec.test_acc = []
rec.ckpts = []
return rec
def record_train_stats(rec, step, loss, acc, lr):
rec.train_step.append(step)
rec.train_loss.append(loss)
rec.train_acc.append(acc)
rec.lr.append(lr)
return rec
def record_test_stats(rec, step, loss, acc):
rec.test_step.append(step)
rec.test_loss.append(loss)
rec.test_acc.append(acc)
return rec
def record_ckpt(rec, step):
rec.ckpts.append(step)
return rec
class DataLoaderX(torch.utils.data.DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())