-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_retrieval_pruner.py
357 lines (304 loc) · 15.2 KB
/
example_retrieval_pruner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import re
import os
import sys
import torch
import time
import json
import argparse
from utils import *
from tqdm import tqdm
from pathlib import Path
from typing import Tuple
from transformers import BertTokenizer, BertModel
from openicl import DatasetReader, TopkRetriever
from datasets import load_dataset, Dataset, DatasetDict
from transformers import GenerationConfig, AutoModelForCausalLM, AutoTokenizer
from llama_model.modeling_skim_predictor import SkimPredictor, C2FPromptPruner_PolicyNetwork
def parse_arguments():
parser = argparse.ArgumentParser(description="Zero-shot-CoT")
parser.add_argument("--api_log_file_name", type=str, default=None, help="mandatory argument ! json['i>=1']['j==1']['k={1,2}'][{'request', response'}]")
parser.add_argument("--random_seed", type=int, default=1, help="random seed")
parser.add_argument("--dataset", type=str, default="gsm8k", choices=["aqua", "gsm8k", "commonsensqa", "addsub", "multiarith", "strategyqa", "svamp", "singleeq", "bigbench_date", "object_tracking", "coin_flip", "last_letters"], help="dataset used for experiment")
parser.add_argument("--minibatch_size", type=int, default=1, choices=[1], help="minibatch size should be 1 because GPT-3 API takes only 1 input for each request")
parser.add_argument("--max_num_worker", type=int, default=16, help="maximum number of workers for dataloader")
parser.add_argument("--method", type=str, default="few_shot_cot", choices=["zero_shot", "zero_shot_cot", "few_shot", "few_shot_cot"], help="method")
parser.add_argument("--cot_trigger_no", type=int, default=1, help="A trigger sentence that elicits a model to execute chain of thought")
parser.add_argument("--cot_shot_length", type=int, default=8, help="length of shots of cot for few-shot ICL settings")
parser.add_argument("--max_length_cot", type=int, default=128, help="maximum length of output tokens by model for reasoning extraction")
parser.add_argument("--max_length_direct", type=int, default=32, help="maximum length of output tokens by model for answer extraction")
parser.add_argument("--limit_dataset_size", type=int, default=0, help="whether to limit test dataset size. if 0, the dataset size is unlimited and we use all the samples in the dataset for testing.")
parser.add_argument("--api_time_interval", type=float, default=1.0, help="")
parser.add_argument("--select_from_train", action='store_true', default=False)
parser.add_argument('--base_model', required=True)
parser.add_argument('--pruner_model', required=True)
parser.add_argument('--load_8bit', action='store_true', default=False)
parser.add_argument('--topk', action='store_true', default=True)
parser.add_argument('--add_8shot', action='store_true', default=False)
parser.add_argument('--add_16shot', action='store_true', default=False)
parser.add_argument('--candidate_set', type=str)
parser.add_argument("--continue_index", type=int, default=0)
args = parser.parse_args()
if args.dataset == "aqua":
args.dataset_path = "./dataset/AQuA/test.json"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
elif args.dataset == "gsm8k":
args.dataset_path = "./dataset/grade-school-math/test.jsonl"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "commonsensqa":
args.dataset_path = "./dataset/CommonsenseQA/dev_rand_split.jsonl"
args.direct_answer_trigger = "\nTherefore, among A through E, the answer is"
args.plausible_answer_trigger = "Choose the most plausible answer from among choices A through E."
elif args.dataset == "addsub":
args.dataset_path = "./dataset/AddSub/AddSub.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "multiarith":
args.dataset_path = "./dataset/MultiArith/MultiArith.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "strategyqa":
args.dataset_path = "./dataset/StrategyQA/task.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "svamp":
args.dataset_path = "./dataset/SVAMP/SVAMP.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "singleeq":
args.dataset_path = "./dataset/SingleEq/questions.json"
args.direct_answer_trigger = "\nTherefore, the answer (arabic numerals) is"
elif args.dataset == "bigbench_date":
args.dataset_path = "./dataset/Bigbench_Date/task.json"
args.direct_answer_trigger = "\nTherefore, among A through F, the answer is"
elif args.dataset == "object_tracking":
args.dataset_path = "./dataset/Bigbench_object_tracking/task.json"
args.direct_answer_trigger = "\nTherefore, among A through C, the answer is"
elif args.dataset == "coin_flip":
args.dataset_path = "./dataset/coin_flip/coin_flip.json"
args.direct_answer_trigger = "\nTherefore, the answer (Yes or No) is"
elif args.dataset == "last_letters":
args.dataset_path = "./dataset/last_letters/last_letters.json"
args.direct_answer_trigger = "\nTherefore, the answer is"
else:
raise ValueError("dataset is not properly defined ...")
# "Therefore, the answer ..." -> "The answer ..."
trigger = args.direct_answer_trigger.replace("\nTherefore, ", "")
args.direct_answer_trigger_for_zeroshot = trigger[0].upper() + trigger[1:]
args.direct_answer_trigger_for_zeroshot_cot = args.direct_answer_trigger
args.direct_answer_trigger_for_fewshot = "The answer is"
if args.cot_trigger_no == 1:
args.cot_trigger = "Let's think step by step."
elif args.cot_trigger_no == 2:
args.cot_trigger = "We should think about this step by step."
elif args.cot_trigger_no == 3:
args.cot_trigger = "First,"
elif args.cot_trigger_no == 4:
args.cot_trigger = "Before we dive into the answer,"
elif args.cot_trigger_no == 5:
args.cot_trigger = "Proof followed by the answer."
elif args.cot_trigger_no == 6:
args.cot_trigger = "Let's think step by step in a realistic way."
elif args.cot_trigger_no == 7:
args.cot_trigger = "Let's think step by step using common sense and knowledge."
elif args.cot_trigger_no == 8:
args.cot_trigger = "Let's think like a detective step by step."
elif args.cot_trigger_no == 9:
args.cot_trigger = "Let's think about this logically."
elif args.cot_trigger_no == 10:
args.cot_trigger = "Let's think step by step. First,"
elif args.cot_trigger_no == 11:
args.cot_trigger = "Let's think"
elif args.cot_trigger_no == 12:
args.cot_trigger = "Let's solve this problem by splitting it into steps."
elif args.cot_trigger_no == 13:
args.cot_trigger = "The answer is after the proof."
elif args.cot_trigger_no == 14:
args.cot_trigger = "Let's be realistic and think step by step."
else:
raise ValueError("cot_trigger_no is not properly defined ...")
return args
def load_model(args) -> tuple:
"""
load tuned model
Args:
args:
Returns:
tuple(tokenizer, model)
"""
base_model = args.base_model
if not base_model:
raise ValueError(f'can not find base model name by the value: {args.model}')
load_8bit = args.load_8bit
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
return tokenizer, model
def evaluate(tokenizer, model, input=None, temperature=0.8, top_p=0.95, top_k=40, num_beams=1, max_new_tokens=256, **kwargs):
inputs = tokenizer(input, return_tensors="pt")
input_ids = inputs["input_ids"].to('cuda')
generation_config = GenerationConfig(
do_sample=False, # no sampling will give best reasoning performance
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
return output
def main():
args = parse_arguments()
print('*****************************')
print(args)
print('*****************************')
fix_seed(args.random_seed)
print("setup data loader ...")
dataloader = setup_data_loader(args)
print_now()
train_data = []
test_data = []
f = open(args.candidate_set)
cot_data = json.load(f)
f.close()
for i in tqdm(range(len(cot_data))):
question = cot_data[i]['instruction'].replace('\n','')
output = cot_data[i]['output'].replace('\n','')
train_data.append({'question':question, 'answer':output})
if args.dataset == "gsm8k":
decoder = json.JSONDecoder()
with open(args.dataset_path) as f:
lines = f.readlines()
for line in lines:
json_res = decoder.raw_decode(line)[0]
question = json_res["question"].strip()
answer = json_res["answer"].split("#### ")[0]
test_data.append({'question':question, 'answer':answer})
elif args.dataset in ("addsub", "multiarith", "singleeq"):
with open(args.dataset_path) as f:
json_data = json.load(f)
for line in json_data:
q = line["sQuestion"].strip()
a = str(line["lSolutions"][0])
if a[-2:] == ".0":
a = a[:-2]
test_data.append({'question':q, 'answer':a})
elif args.dataset == "svamp":
with open(args.dataset_path) as f:
json_data = json.load(f)
for line in json_data:
q = line["Body"].strip() + " " + line["Question"].strip()
a = str(line["Answer"])
if a[-2:] == ".0":
a = a[:-2]
test_data.append({'question':q, 'answer':a})
else:
raise NotImplementedError("{} dataset is not supported".format(args.dataset))
tokenizer, model = load_model(args)
print("Finish Loading Models")
test_subset = Dataset.from_list(test_data)
train_subset = Dataset.from_list(train_data)
dataset = DatasetDict({"train": train_subset,"test": test_subset})
data = DatasetReader(dataset, input_columns=['question'], output_column='answer')
retriever = TopkRetriever(data, ice_num=args.cot_shot_length)
topk_prompt = retriever.retrieve()
del retriever, data
torch.cuda.empty_cache()
bert_tokenizer = BertTokenizer.from_pretrained('bert-large-cased')
bert_tokenizer.add_tokens(["\n"])
bert_model = BertModel.from_pretrained('bert-large-cased', output_hidden_states = True)
bert_model.resize_token_embeddings(len(bert_tokenizer))
bert_model.eval()
pruner_model = C2FPromptPruner_PolicyNetwork(alpha1=-1, alpha2=1, target_token=1024, feat_shape=1024)
pruner_model.load_state_dict(torch.load(args.pruner_model))
pruner_model.eval()
if args.add_8shot:
demo_addshot = create_demo_text(args, True, 8)
elif args.add_16shot:
demo_addshot = create_demo_text(args, True, 16)
total = 0
correct_list = []
for i, data in enumerate(dataloader):
if (i+1) < args.continue_index:
continue
print('*************************')
print("{}st data".format(i+1))
# Prepare question template ...
x, y = data
x = "Q: " + x[0] + "\n" + "A:"
y = y[0].strip()
if args.method == "few_shot_cot":
demo_text = retrieve_demo_text_list(i, dataset, topk_prompt)
demo = compress_prompt(demo_text, pruner_model, bert_tokenizer, bert_model, 8, 1024)
else:
raise NotImplementedError("Retrieval-based ICL only support few-shot-cot")
demo = demo + "\n\n" + demo_addshot
#demo = demo_addshot + demo
x = demo + x
# Answer prediction by generating text ...
max_length = args.max_length_cot if "cot" in args.method else args.max_length_direct
z = evaluate(tokenizer, model, x)
z = z.split(x)[-1]
# Answer extraction for zero-shot-cot ...
if args.method == "zero_shot_cot":
z2 = x + z + " " + args.direct_answer_trigger_for_zeroshot_cot
max_length = args.max_length_direct
pred = evaluate(tokenizer, model, z2)
pred = pred.split(z2)[-1]
print(z2 + pred)
else:
pred = z
print(x + pred)
# Clensing of predicted answer ...
pred = answer_cleansing(args, pred)
# Choose the most frequent answer from the list ...
print("pred : {}".format(pred))
print("GT : " + y)
print('*************************')
# Checking answer ...
pred = pred.replace(',','').replace('\n', '')
y = y.replace(',','').replace('\n', '')
if is_number(pred):
correct = int(float(pred) == float(y))
else:
correct = 0
correct_list.append(correct)
total += 1 #np.array([y]).size(0)
if (args.limit_dataset_size != 0) and ((i+1) >= args.limit_dataset_size):
break
#raise ValueError("Stop !!")
# Calculate accuracy ...
accuracy = (sum(correct_list) * 1.0 / total) * 100
print("accuracy : {}".format(accuracy))
def generate_pruned_prompt(full_prompt, shot_selection, token_selection, tokenizer):
tokenized_text = tokenizer(full_prompt, padding="max_length", truncation=True, max_length=512)
input_ids = torch.tensor([tokenized_text['input_ids']])
input_ids = torch.squeeze(input_ids, 0)
pruned_input_ids = input_ids[shot_selection,:]
pruned_input_ids_flatten = torch.flatten(pruned_input_ids)
pruned_input_ids_final = pruned_input_ids_flatten[token_selection]
return pruned_input_ids_final
def compress_prompt(input_prompt, pruner_model, bert_tokenizer, bert_model, target_shot, target_token):
demo_text = input_prompt
tokenized_text = bert_tokenizer(demo_text, padding="max_length", truncation=True, max_length=512)
input_ids = torch.tensor([tokenized_text['input_ids']])
input_ids = torch.squeeze(input_ids, 0)
with torch.no_grad():
last_hidden_states = bert_model(input_ids)[0] # Models outputs are now tuples
_, shot_selection, token_selection, _, _ = pruner_model(last_hidden_states)
pruned_few_shot_input_id = generate_pruned_prompt(input_prompt, shot_selection, token_selection, bert_tokenizer)
pruned_prompt_text = bert_tokenizer.decode(pruned_few_shot_input_id, skip_special_tokens=True)
# format cleanning for results
pruned_prompt_text = clean_response(pruned_prompt_text)
return pruned_prompt_text[2:]
if __name__ == "__main__":
main()