forked from webmachinelearning/webnn-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnnoise.js
161 lines (155 loc) · 6.84 KB
/
rnnoise.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
'use strict';
import {buildConstantByNpy} from '../common/utils.js';
export class RNNoise {
constructor(modelPath, batchSize, frames) {
this.baseUrl_ = modelPath;
this.batchSize_ = batchSize;
this.frames_ = frames;
this.model_ = null;
this.context_ = null;
this.graph_ = null;
this.builder_ = null;
this.featureSize = 42;
this.vadGruHiddenSize = 24;
this.vadGruNumDirections = 1;
this.noiseGruHiddenSize = 48;
this.noiseGruNumDirections = 1;
this.denoiseGruHiddenSize = 96;
this.denoiseGruNumDirections = 1;
}
async load(contextOptions) {
this.context_ = await navigator.ml.createContext(contextOptions);
this.builder_ = new MLGraphBuilder(this.context_);
// Create constants by loading pre-trained data from .npy files.
const inputDenseKernel0 = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'input_dense_kernel_0.npy');
const inputDenseBias0 = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'input_dense_bias_0.npy');
const vadGruW = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'vad_gru_W.npy');
const vadGruR = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'vad_gru_R.npy');
const vadGruBData = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'vad_gru_B.npy');
const noiseGruW = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'noise_gru_W.npy');
const noiseGruR = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'noise_gru_R.npy');
const noiseGruBData = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'noise_gru_B.npy');
const denoiseGruW = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'denoise_gru_W.npy');
const denoiseGruR = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'denoise_gru_R.npy');
const denoiseGruBData = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'denoise_gru_B.npy');
const denoiseOutputKernel0 = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'denoise_output_kernel_0.npy');
const denoiseOutputBias0 = await buildConstantByNpy(this.builder_,
this.baseUrl_ + 'denoise_output_bias_0.npy');
// Build up the network.
const input = this.builder_.input('input', {
type: 'float32',
dataType: 'float32',
dimensions: [this.batchSize_, this.frames_, this.featureSize],
});
const inputDense0 = this.builder_.matmul(input, inputDenseKernel0);
const biasedTensorName2 = this.builder_.add(inputDense0, inputDenseBias0);
const inputDenseTanh0 = this.builder_.tanh(biasedTensorName2);
const vadGruX = this.builder_.transpose(
inputDenseTanh0, {permutation: [1, 0, 2]});
const vadGruB = this.builder_.slice(
vadGruBData, [0, 0], [1, 3 * this.vadGruHiddenSize]);
const vadGruRB = this.builder_.slice(
vadGruBData,
[0, 3 * this.vadGruHiddenSize],
[1, 3 * this.vadGruHiddenSize]);
const vadGruInitialH = this.builder_.input('vadGruInitialH', {
type: 'float32',
dataType: 'float32',
dimensions: [1, this.batchSize_, this.vadGruHiddenSize],
});
const [vadGruYH, vadGruY] = this.builder_.gru(vadGruX,
vadGruW, vadGruR, this.frames_, this.vadGruHiddenSize, {
bias: vadGruB,
recurrentBias: vadGruRB,
initialHiddenState: vadGruInitialH,
returnSequence: true,
resetAfter: false,
activations: [this.builder_.sigmoid(), this.builder_.relu()],
});
const vadGruYTransposed = this.builder_.transpose(
vadGruY, {permutation: [2, 0, 1, 3]});
const vadGruTranspose1 = this.builder_.reshape(
vadGruYTransposed, [1, this.frames_, this.vadGruHiddenSize]);
const concatenate1 = this.builder_.concat(
[inputDenseTanh0, vadGruTranspose1, input], 2);
const noiseGruX = this.builder_.transpose(
concatenate1, {permutation: [1, 0, 2]});
const noiseGruB = this.builder_.slice(
noiseGruBData, [0, 0], [1, 3 * this.noiseGruHiddenSize]);
const noiseGruRB = this.builder_.slice(
noiseGruBData,
[0, 3 * this.noiseGruHiddenSize],
[1, 3 * this.noiseGruHiddenSize]);
const noiseGruInitialH = this.builder_.input('noiseGruInitialH', {
type: 'float32',
dataType: 'float32',
dimensions: [1, this.batchSize_, this.noiseGruHiddenSize],
});
const [noiseGruYH, noiseGruY] = this.builder_.gru(noiseGruX,
noiseGruW, noiseGruR, this.frames_, this.noiseGruHiddenSize, {
bias: noiseGruB,
recurrentBias: noiseGruRB,
initialHiddenState: noiseGruInitialH,
returnSequence: true,
resetAfter: false,
activations: [this.builder_.sigmoid(), this.builder_.relu()],
});
const noiseGruYTransposed = this.builder_.transpose(
noiseGruY, {permutation: [2, 0, 1, 3]});
const noiseGruTranspose1 = this.builder_.reshape(
noiseGruYTransposed, [1, this.frames_, this.noiseGruHiddenSize]);
const concatenate2 = this.builder_.concat(
[vadGruTranspose1, noiseGruTranspose1, input], 2);
const denoiseGruX = this.builder_.transpose(
concatenate2, {permutation: [1, 0, 2]});
const denoiseGruB = this.builder_.slice(
denoiseGruBData, [0, 0], [1, 3 * this.denoiseGruHiddenSize]);
const denoiseGruRB = this.builder_.slice(
denoiseGruBData,
[0, 3 * this.denoiseGruHiddenSize],
[1, 3 * this.denoiseGruHiddenSize]);
const denoiseGruInitialH = this.builder_.input('denoiseGruInitialH', {
type: 'float32',
dataType: 'float32',
dimensions: [1, this.batchSize_, this.denoiseGruHiddenSize],
});
const [denoiseGruYH, denoiseGruY] = this.builder_.gru(denoiseGruX,
denoiseGruW, denoiseGruR, this.frames_, this.denoiseGruHiddenSize, {
bias: denoiseGruB,
recurrentBias: denoiseGruRB,
initialHiddenState: denoiseGruInitialH,
returnSequence: true,
resetAfter: false,
activations: [this.builder_.sigmoid(), this.builder_.relu()],
});
const denoiseGruYTransposed = this.builder_.transpose(
denoiseGruY, {permutation: [2, 0, 1, 3]});
const denoiseGruTranspose1 = this.builder_.reshape(
denoiseGruYTransposed, [1, this.frames_, this.denoiseGruHiddenSize]);
const denoiseOutput0 = this.builder_.matmul(
denoiseGruTranspose1, denoiseOutputKernel0);
const biasedTensorName = this.builder_.add(
denoiseOutput0, denoiseOutputBias0);
const denoiseOutput = this.builder_.sigmoid(biasedTensorName);
return {denoiseOutput, vadGruYH, noiseGruYH, denoiseGruYH};
}
async build(outputOperand) {
this.graph_ = await this.builder_.build(outputOperand);
}
async compute(inputs, outputs) {
const results = await this.context_.compute(this.graph_, inputs, outputs);
return results.outputs;
}
}