You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(* -*- mode: coq; coq-prog-args: ("-emacs" "-indices-matter") *)(* File reduced by coq-bug-finder from original input, then from 4988 lines to 856 lines, then from 648 lines to 398 lines, then from 401 lines to 332 lines, then from 287 lines to 250 lines, then from 257 lines to 241 lines, then from 223 lines to 175 lines *)SetUniverse Polymorphism.
Set Asymmetric Patterns.
ReservedNotation "g 'o' f" (at level 40, left associativity).
GeneralizableAllVariables.
Definition admit {T} : T.
Admitted.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y" := (@paths _ x y) : type_scope.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) : Type
:= forall x:A, f x = g x.
HintUnfold pointwise_paths : typeclass_instances.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
: forall x, f x = g x
:= fun x => match h with idpath => idpath end.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { equiv_inv : B -> A }.
Record Equiv A B := BuildEquiv { equiv_fun :> A -> B ; equiv_isequiv :> IsEquiv equiv_fun }.
Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.
Class Contr_internal (A : Type) := {}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| minus_two => Contr_internal A
| trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Instance istrunc_paths (A : Type) n `{H : IsTrunc (trunc_S n) A} (x y : A)
: IsTrunc n (x = y)
:= H x y.
Notation IsHSet := (IsTrunc minus_two).
Class Funext :=
{ isequiv_apD10 :> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }.
LocalOpenScope equiv_scope.
GlobalInstance isequiv_inverse `{IsEquiv A B f} : IsEquiv f^-1 | 10000
:= BuildIsEquiv B A f^-1 f.
Instance trunc_succ `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000.
admit.
Defined.
Definition trunc_equiv `(f : A -> B)
`{IsTrunc n A} `{IsEquiv A B f}
: IsTrunc n B.
admit.
Defined.
Definition trunc_equiv' `(f : A <~> B) `{IsTrunc n A}
: IsTrunc n B
:= admit.
SetImplicitArguments.
DelimitScope morphism_scope with morphism.
DelimitScope category_scope with category.
DelimitScope object_scope with object.
Record PreCategory :=
Build_PreCategory {
object :> Type;
morphism : object -> object -> Type;
identity : forall x, morphism x x;
compose : forall s d d',
morphism d d'
-> morphism s d
-> morphism s d'
where "f 'o' g" := (compose f g);
associativity : forall x1 x2 x3 x4
(m1 : morphism x1 x2)
(m2 : morphism x2 x3)
(m3 : morphism x3 x4),
(m3 o m2) o m1 = m3 o (m2 o m1);
left_identity : forall a b (f : morphism a b), identity b o f = f;
right_identity : forall a b (f : morphism a b), f o identity a = f;
trunc_morphism : forall s d, IsHSet (morphism s d)
}.
ExistingInstance trunc_morphism.
Infix "o" := (@compose _ _ _ _) : morphism_scope.
DelimitScope functor_scope with functor.
LocalOpenScope morphism_scope.
Record Functor (C D : PreCategory) :=
{
object_of :> C -> D;
morphism_of : forall s d, morphism C s d -> morphism D (object_of s) (object_of d)
}.
GlobalInstance trunc_forall `{Funext} `{P : A -> Type} `{forall a, IsTrunc n (P a)}
: IsTrunc n (forall a, P a) | 100.
Proof.
generalize dependent P.
induction n as [ | n' IH]; (simpl; intros P ?).
- admit.
- pose (fun f g => trunc_equiv (@apD10 A P f g) ^-1); admit.
Defined.
Instance trunc_sigma `{P : A -> Type}
`{IsTrunc n A} `{forall a, IsTrunc n (P a)}
: IsTrunc n (sigT P) | 100.
admit.
Defined.
Record NaturalTransformation C D (F G : Functor C D) :=
Build_NaturalTransformation' {
components_of :> forall c, morphism D (F c) (G c)
}.
Section path_natural_transformation.
Context `{Funext}.
Variable C : PreCategory.
Variable D : PreCategory.
Variables F G : Functor C D.
Lemma equiv_sig_natural_transformation
: { CO : forall x, morphism D (F x) (G x)
| forall s d (m : morphism C s d),
CO d o morphism_of F _ _ m = morphism_of G _ _ m o CO s }
<~> NaturalTransformation F G.
admit.
Defined.
GlobalInstance trunc_natural_transformation
: IsHSet (NaturalTransformation F G).
Proof.
eapply trunc_equiv'; [ exact equiv_sig_natural_transformation | ].
typeclasses eauto.
Qed.
Lemma path_natural_transformation (T U : NaturalTransformation F G)
: components_of T == components_of U
-> T = U.
admit.
Defined.
End path_natural_transformation.
Ltac path_natural_transformation :=
repeat match goal with
| _ => intro
| _ => apply path_natural_transformation; simpl
end.
Section FunctorSectionCategory.
Context `{Funext}.
Variable C : PreCategory.
Variable D : PreCategory.
Definition category_of_sections : PreCategory.
Proof.
refine (@Build_PreCategory
(Functor D C)
(fun F G => NaturalTransformation F G)
admit
admit
_
_
_
_);
abstract (path_natural_transformation; admit).
Defined. (* Stack overflow *)
The text was updated successfully, but these errors were encountered:
The text was updated successfully, but these errors were encountered: