diff --git a/theories/Algebra/AbGroups/AbHom.v b/theories/Algebra/AbGroups/AbHom.v index 90880e2d074..3edd6877a43 100644 --- a/theories/Algebra/AbGroups/AbHom.v +++ b/theories/Algebra/AbGroups/AbHom.v @@ -92,13 +92,13 @@ Defined. Global Instance is0bifunctor_ab_hom `{Funext} : Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup). Proof. - rapply Build_Is0Bifunctor. + rapply Build_Is0Bifunctor''. Defined. Global Instance is1bifunctor_ab_hom `{Funext} : Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup). Proof. - nrapply Build_Is1Bifunctor. + nrapply Build_Is1Bifunctor''. 1,2: exact _. intros A A' f B B' g phi; cbn. by apply equiv_path_grouphomomorphism. diff --git a/theories/Algebra/AbSES/BaerSum.v b/theories/Algebra/AbSES/BaerSum.v index b77b057b127..e804c762aca 100644 --- a/theories/Algebra/AbSES/BaerSum.v +++ b/theories/Algebra/AbSES/BaerSum.v @@ -54,13 +54,13 @@ Defined. Global Instance is0bifunctor_abses' `{Univalence} : Is0Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type). Proof. - rapply Build_Is0Bifunctor. + rapply Build_Is0Bifunctor''. Defined. Global Instance is1bifunctor_abses' `{Univalence} : Is1Bifunctor (AbSES' : AbGroup^op -> AbGroup -> Type). Proof. - snrapply Build_Is1Bifunctor. + snrapply Build_Is1Bifunctor''. 1,2: exact _. intros ? ? g ? ? f E; cbn. exact (abses_pushout_pullback_reorder E f g). @@ -232,13 +232,13 @@ Defined. Global Instance is0bifunctor_abses `{Univalence} : Is0Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType). Proof. - rapply Build_Is0Bifunctor. + rapply Build_Is0Bifunctor''. Defined. Global Instance is1bifunctor_abses `{Univalence} : Is1Bifunctor (AbSES : AbGroup^op -> AbGroup -> pType). Proof. - snrapply Build_Is1Bifunctor. + snrapply Build_Is1Bifunctor''. 1,2: exact _. intros ? ? f ? ? g. rapply hspace_phomotopy_from_homotopy. diff --git a/theories/Algebra/AbSES/Ext.v b/theories/Algebra/AbSES/Ext.v index ae54b254dd1..317a9f4cd35 100644 --- a/theories/Algebra/AbSES/Ext.v +++ b/theories/Algebra/AbSES/Ext.v @@ -63,9 +63,9 @@ Defined. (** ** The bifunctor [ab_ext] *) -Definition ab_ext `{Univalence} (B A : AbGroup@{u}) : AbGroup. +Definition ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) (A : AbGroup@{u}) : AbGroup@{v}. Proof. - snrapply (Build_AbGroup (grp_ext B A)). + snrapply (Build_AbGroup (grp_ext@{u v} B A)). intros E F. strip_truncations; cbn. apply ap. @@ -121,16 +121,16 @@ Defined. Global Instance is0bifunctor_abext `{Univalence} : Is0Bifunctor (A:=AbGroup^op) ab_ext. Proof. - rapply Build_Is0Bifunctor. + rapply Build_Is0Bifunctor''. Defined. Global Instance is1bifunctor_abext `{Univalence} : Is1Bifunctor (A:=AbGroup^op) ab_ext. Proof. - snrapply Build_Is1Bifunctor. + snrapply Build_Is1Bifunctor''. 1,2: exact _. intros A B. - exact (bifunctor_isbifunctor (Ext : AbGroup^op -> AbGroup -> pType)). + exact (bifunctor_coh (Ext : AbGroup^op -> AbGroup -> pType)). Defined. (** We can push out a fixed extension while letting the map vary, and this defines a group homomorphism. *) diff --git a/theories/Homotopy/Join/Core.v b/theories/Homotopy/Join/Core.v index 1dc3b578789..50b7d943cd5 100644 --- a/theories/Homotopy/Join/Core.v +++ b/theories/Homotopy/Join/Core.v @@ -562,7 +562,8 @@ Section FunctorJoin. Global Instance is0bifunctor_join : Is0Bifunctor Join. Proof. - rapply Build_Is0Bifunctor'. + snrapply Build_Is0Bifunctor'. + 1,2: exact _. apply Build_Is0Functor. intros A B [f g]. exact (functor_join f g). diff --git a/theories/Homotopy/Join/JoinAssoc.v b/theories/Homotopy/Join/JoinAssoc.v index 70689296307..cd0630a95e0 100644 --- a/theories/Homotopy/Join/JoinAssoc.v +++ b/theories/Homotopy/Join/JoinAssoc.v @@ -266,20 +266,7 @@ Proof. - intros A B C. apply join_assoc. - intros [[A B] C] [[A' B'] C'] [[f g] h]; cbn. - (* This is awkward because Monoidal.v works with a tensor that is separately a functor in each variable. *) - intro x. - rhs_V nrapply functor_join_compose. - rhs_V nrapply functor2_join. - 2: reflexivity. - 2: nrapply functor_join_compose. - cbn. - rhs_V nrapply join_assoc_nat; cbn. - apply ap. - lhs_V nrapply functor_join_compose. - lhs_V nrapply functor_join_compose. - apply functor2_join. - 1: reflexivity. - symmetry; nrapply functor_join_compose. + apply join_assoc_nat. Defined. (** ** The Triangle Law *) diff --git a/theories/Homotopy/Smash.v b/theories/Homotopy/Smash.v index 60600c0bd70..cc26c8374cf 100644 --- a/theories/Homotopy/Smash.v +++ b/theories/Homotopy/Smash.v @@ -353,7 +353,8 @@ Defined. Global Instance is0bifunctor_smash : Is0Bifunctor Smash. Proof. - rapply Build_Is0Bifunctor'. + snrapply Build_Is0Bifunctor'. + 1,2: exact _. nrapply Build_Is0Functor. intros [X Y] [A B] [f g]. exact (functor_smash f g). diff --git a/theories/WildCat/Bifunctor.v b/theories/WildCat/Bifunctor.v index dd6c4667ccc..998fe9a2597 100644 --- a/theories/WildCat/Bifunctor.v +++ b/theories/WildCat/Bifunctor.v @@ -1,65 +1,44 @@ Require Import Basics.Overture Basics.Tactics. -Require Import Types.Forall. +Require Import Types.Forall Types.Prod. Require Import WildCat.Core WildCat.Prod WildCat.Equiv WildCat.NatTrans WildCat.Square. (** * Bifunctors between WildCats *) (** ** Definition *) -Class Is0Bifunctor {A B C : Type} `{IsGraph A, IsGraph B, IsGraph C} - (F : A -> B -> C) - := { - bifunctor_is0functor01 :: forall a, Is0Functor (F a); - bifunctor_is0functor10 :: forall b, Is0Functor (flip F b); -}. - -Class Is1Bifunctor {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} - (F : A -> B -> C) `{!Is0Bifunctor F} - := { - bifunctor_is1functor01 :: forall a : A, Is1Functor (F a); - bifunctor_is1functor10 :: forall b : B, Is1Functor (flip F b); - bifunctor_isbifunctor : forall a0 a1 (f : a0 $-> a1) b0 b1 (g : b0 $-> b1), - fmap (F _) g $o fmap (flip F _) f $== fmap (flip F _) f $o fmap (F _) g +(** We choose to store redundant information in the class, so that depending on how an instance is constructed, we will get the expected implementations of [fmap10], [fmap01] and [fmap11]. *) +Class Is0Bifunctor {A B C : Type} + `{IsGraph A, IsGraph B, IsGraph C} (F : A -> B -> C) := { + is0functor_bifunctor_uncurried :: Is0Functor (uncurry F); + is0functor01_bifunctor :: forall a, Is0Functor (F a); + is0functor10_bifunctor :: forall b, Is0Functor (flip F b); }. -Arguments bifunctor_isbifunctor {A B C} {_ _ _ _ _ _ _ _ _ _ _ _} - F {_ _} {a0 a1} f {b0 b1} g. - -(** Functors from product categories are (uncurried) bifunctors. *) -Global Instance is0bifunctor_functor_uncurried {A B C : Type} - `{Is01Cat A, Is01Cat B, IsGraph C} (F : A * B -> C) `{!Is0Functor F} - : Is0Bifunctor (fun a b => F (a, b)). +(** We provide two alternate constructors, allowing the user to provide just the first field or the last two fields. *) +Definition Build_Is0Bifunctor' {A B C : Type} + `{Is01Cat A, Is01Cat B, IsGraph C} (F : A -> B -> C) + `{!Is0Functor (uncurry F)} + : Is0Bifunctor F. Proof. - rapply Build_Is0Bifunctor. + snrapply Build_Is0Bifunctor. + - exact _. + - exact (is0functor_functor_uncurried01 (uncurry F)). + - exact (is0functor_functor_uncurried10 (uncurry F)). Defined. -Global Instance is1bifunctor_functor_uncurried {A B C : Type} - `{Is1Cat A, Is1Cat B, Is1Cat C} - (F : A * B -> C) `{!Is0Functor F, !Is1Functor F} - : Is1Bifunctor (fun a b => F (a, b)). +Definition Build_Is0Bifunctor'' {A B C : Type} + `{IsGraph A, IsGraph B, Is01Cat C} (F : A -> B -> C) + `{!forall a, Is0Functor (F a), !forall b, Is0Functor (flip F b)} + : Is0Bifunctor F. Proof. - apply Build_Is1Bifunctor. - 1,2: exact _. - intros a b f c d g; cbn. - refine ((fmap_comp F _ _)^$ $@ _ $@ fmap_comp F _ _). - rapply (fmap2 F). - refine (cat_idl f $@ (cat_idr f)^$, _). - exact (cat_idr g $@ (cat_idl g)^$). + snrapply Build_Is0Bifunctor. + 2,3: exact _. + snrapply Build_Is0Functor. + intros [a b] [a' b'] [f g]. + change (F a b $-> F a' b'). + exact (fmap (flip F b') f $o fmap (F a) g). Defined. -(** It is often simplest to create a bifunctor [A -> B -> C] by constructing a functor from the product category [A * B]. *) -Definition Build_Is0Bifunctor' {A B C : Type} `{Is01Cat A, Is01Cat B, IsGraph C} - (F : A -> B -> C) `{!Is0Functor (uncurry F)} - : Is0Bifunctor F - := is0bifunctor_functor_uncurried (uncurry F). - -Definition Build_Is1Bifunctor' {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} - (F : A -> B -> C) `{!Is0Functor (uncurry F), !Is1Functor (uncurry F)} - : Is1Bifunctor F - := is1bifunctor_functor_uncurried (uncurry F). - -(** ** Bifunctor lemmas *) - (** *** 1-functorial action *) (** [fmap] in the first argument. *) @@ -74,44 +53,88 @@ Definition fmap01 {A B C : Type} `{IsGraph A, IsGraph B, IsGraph C} : F a b0 $-> F a b1 := fmap (F a) g. -(** [fmap] in both arguments. Note that we made a choice in the order in which to compose, but the bifunctor coherence condition says that both ways agree. *) -Definition fmap11 {A B C : Type} `{IsGraph A, IsGraph B, Is01Cat C} +(** [fmap] in both arguments. *) +Definition fmap11 {A B C : Type} `{IsGraph A, IsGraph B, IsGraph C} (F : A -> B -> C) `{!Is0Bifunctor F} {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} (g : b0 $-> b1) : F a0 b0 $-> F a1 b1 - := fmap01 F _ g $o fmap10 F f _. + := fmap_pair (uncurry F) f g. -(** [fmap11] but with the other choice. *) -Definition fmap11' {A B C : Type} `{IsGraph A, IsGraph B, Is01Cat C} - (F : A -> B -> C) `{!Is0Bifunctor F} {a0 a1 : A} (f : a0 $-> a1) - {b0 b1 : B} (g : b0 $-> b1) - : F a0 b0 $-> F a1 b1 - := fmap10 F f _ $o fmap01 F _ g. +(** As with [Is0Bifunctor], we store redundant information. In addition, we store the proofs that they are consistent with each other. *) +Class Is1Bifunctor {A B C : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F} := { -(** *** Coherence *) + is1functor_bifunctor_uncurried :: Is1Functor (uncurry F); + is1functor01_bifunctor :: forall a, Is1Functor (F a); + is1functor10_bifunctor :: forall b, Is1Functor (flip F b); -(** The bifunctor coherence condition becomes a 2-cell between the two choices for [fmap11]. *) -Definition fmap11_coh {A B C : Type} - (F : A -> B -> C) `{Is1Bifunctor A B C F} - {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} (g : b0 $-> b1) - : fmap11 F f g $== fmap11' F f g. + fmap11_is_fmap01_fmap10 {a0 a1} (f : a0 $-> a1) {b0 b1} (g : b0 $-> b1) + : fmap11 F f g $== fmap01 F a1 g $o fmap10 F f b0; + fmap11_is_fmap10_fmap01 {a0 a1} (f : a0 $-> a1) {b0 b1} (g : b0 $-> b1) + : fmap11 F f g $== fmap10 F f b1 $o fmap01 F a0 g; +}. + +Arguments Is1Bifunctor {A B C _ _ _ _ _ _ _ _ _ _ _ _} F {Is0Bifunctor} : rename. +Arguments Build_Is1Bifunctor {A B C _ _ _ _ _ _ _ _ _ _ _ _} F {_} _ _ _ _ _. +Arguments fmap11_is_fmap01_fmap10 {A B C _ _ _ _ _ _ _ _ _ _ _ _} F + {Is0Bifunctor Is1Bifunctor} {a0 a1} f {b0 b1} g : rename. +Arguments fmap11_is_fmap10_fmap01 {A B C _ _ _ _ _ _ _ _ _ _ _ _} F + {Is0Bifunctor Is1Bifunctor} {a0 a1} f {b0 b1} g : rename. + +(** We again provide two alternate constructors. *) +Definition Build_Is1Bifunctor' {A B C : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) + `{!Is0Functor (uncurry F), !Is1Functor (uncurry F)} + : Is1Bifunctor (Is0Bifunctor := Build_Is0Bifunctor' F) F. Proof. - rapply bifunctor_isbifunctor. + snrapply Build_Is1Bifunctor. + - exact _. + - exact (is1functor_functor_uncurried01 (uncurry F)). + - exact (is1functor_functor_uncurried10 (uncurry F)). + - intros a0 a1 f b0 b1 g. + refine (_^$ $@ fmap_pair_comp (uncurry F) f (Id b0) (Id a1) g). + exact (fmap2_pair (uncurry F) (cat_idl _) (cat_idr _)). + - intros a0 a1 f b0 b1 g. + refine (_^$ $@ fmap_pair_comp (uncurry F) (Id a0) g f (Id b1)). + exact (fmap2_pair (uncurry F) (cat_idr _) (cat_idl _)). Defined. -(** [fmap11] with right map the identity gives [fmap10]. *) -Definition fmap10_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} - (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} - {a0 a1 : A} (f : a0 $-> a1) (b : B) - : fmap11 F f (Id b) $== fmap10 F f b - := (fmap_id _ _ $@R _) $@ cat_idl _. +Definition Build_Is1Bifunctor'' {A B C : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) + `{!forall a, Is0Functor (F a), !forall b, Is0Functor (flip F b)} + (Is0Bifunctor_F := Build_Is0Bifunctor'' F) + `{!forall a, Is1Functor (F a), !forall b, Is1Functor (flip F b)} + (bifunctor_coh : forall a0 a1 (f : a0 $-> a1) b0 b1 (g : b0 $-> b1), + fmap01 F a1 g $o fmap10 F f b0 $== fmap10 F f b1 $o fmap01 F a0 g) + : Is1Bifunctor F. +Proof. + snrapply Build_Is1Bifunctor. + - snrapply Build_Is1Functor. + + intros [a b] [a' b'] [f g] [f' g'] [p p']; unfold fst, snd in * |- . + exact (fmap2 (F a) p' $@@ fmap2 (flip F b') p). + + intros [a b]. + exact ((fmap_id (F a) b $@@ fmap_id (flip F b) _) $@ cat_idr _). + + intros [a b] [a' b'] [a'' b''] [f g] [f' g']; unfold fst, snd in * |- . + refine ((fmap_comp (F a) g g' $@@ fmap_comp (flip F b'') f f') $@ _). + nrefine (cat_assoc_opp _ _ _ $@ (_ $@R _) $@ cat_assoc _ _ _). + refine (cat_assoc _ _ _ $@ (_ $@L _^$) $@ cat_assoc_opp _ _ _). + nrapply bifunctor_coh. + - exact _. + - exact _. + - intros a0 a1 f b0 b1 g. + exact (bifunctor_coh a0 a1 f b0 b1 g)^$. + - reflexivity. +Defined. -(** [fmap11] with left map the identity gives [fmap01]. *) -Definition fmap01_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} - (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} - (a : A) {b0 b1 : B} (g : b0 $-> b1) - : fmap11 F (Id a) g $== fmap01 F a g - := (_ $@L fmap_id _ _) $@ cat_idr _. +(** ** Bifunctor lemmas *) + +(** *** Coherence *) + +Definition bifunctor_coh {A B C : Type} + (F : A -> B -> C) `{Is1Bifunctor A B C F} + {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} (g : b0 $-> b1) + : fmap01 F a1 g $o fmap10 F f b0 $== fmap10 F f b1 $o fmap01 F a0 g + := (fmap11_is_fmap01_fmap10 _ _ _)^$ $@ fmap11_is_fmap10_fmap01 _ _ _. (** 2-functorial action *) @@ -125,7 +148,7 @@ Definition fmap12 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} {g g' : b0 $-> b1} (q : g $== g') : fmap11 F f g $== fmap11 F f g' - := fmap02 F _ q $@R _. + := fmap2_pair (uncurry F) (Id _) q. Definition fmap20 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} @@ -137,14 +160,14 @@ Definition fmap21 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 : A} {f f' : a0 $-> a1} (p : f $== f') {b0 b1 : B} (g : b0 $-> b1) : fmap11 F f g $== fmap11 F f' g - := _ $@L fmap20 F p _. + := fmap2_pair (uncurry F) p (Id _). Definition fmap22 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 : A} {f f' : a0 $-> a1} (p : f $== f') {b0 b1 : B} {g g' : b0 $-> b1} (q : g $== g') : fmap11 F f g $== fmap11 F f' g' - := fmap20 F p b0 $@@ fmap02 F a1 q. + := fmap2_pair (uncurry F) p q. (** *** Identity preservation *) @@ -160,11 +183,22 @@ Definition fmap10_id {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} Definition fmap11_id {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} (a : A) (b : B) - : fmap11 F (Id a) (Id b) $== Id (F a b). -Proof. - refine ((_ $@@ _) $@ cat_idr _). - 1,2: rapply fmap_id. -Defined. + : fmap11 F (Id a) (Id b) $== Id (F a b) + := fmap_id (uncurry F) (a, b). + +(** [fmap11] with left map the identity gives [fmap01]. *) +Definition fmap01_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} + (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} + (a : A) {b0 b1 : B} (g : b0 $-> b1) + : fmap11 F (Id a) g $== fmap01 F a g + := fmap11_is_fmap01_fmap10 _ _ _ $@ (_ $@L fmap10_id _ _ _) $@ cat_idr _. + +(** [fmap11] with right map the identity gives [fmap10]. *) +Definition fmap10_is_fmap11 {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} + (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} + {a0 a1 : A} (f : a0 $-> a1) (b : B) + : fmap11 F f (Id b) $== fmap10 F f b + := fmap11_is_fmap01_fmap10 _ _ _ $@ (fmap01_id _ _ _ $@R _) $@ cat_idl _. (** *** Composition preservation *) @@ -184,13 +218,8 @@ Definition fmap11_comp {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 a2 : A} (g : a1 $-> a2) (f : a0 $-> a1) {b0 b1 b2 : B} (k : b1 $-> b2) (h : b0 $-> b1) - : fmap11 F (g $o f) (k $o h) $== fmap11 F g k $o fmap11 F f h. -Proof. - refine ((fmap10_comp F _ _ _ $@@ fmap01_comp F _ _ _) $@ _). - refine (cat_assoc _ _ _ $@ (_ $@L _) $@ (cat_assoc _ _ _)^$). - refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ cat_assoc _ _ _). - rapply fmap11_coh. -Defined. + : fmap11 F (g $o f) (k $o h) $== fmap11 F g k $o fmap11 F f h + := fmap_pair_comp (uncurry F) _ _ _ _. (** *** Equivalence preservation *) @@ -210,7 +239,7 @@ Global Instance iemap11 {A B C : Type} `{HasEquivs A, HasEquivs B, HasEquivs C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} {a0 a1 : A} (f : a0 $<~> a1) {b0 b1 : B} (g : b0 $<~> b1) : CatIsEquiv (fmap11 F f g) - := compose_catie' _ _. + := iemap (uncurry F) (a := (a0, b0)) (b := (_, _)) (f, g). Definition emap10 {A B C : Type} `{HasEquivs A, Is1Cat B, HasEquivs C} (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} @@ -230,54 +259,33 @@ Definition emap11 {A B C : Type} `{HasEquivs A, HasEquivs B, HasEquivs C} : F a0 b0 $<~> F a1 b1 := Build_CatEquiv (fmap11 F f g). -(** *** Uncurrying *) - -(** Any 0-bifunctor [A -> B -> C] can be made into a functor from the product category [A * B -> C] in two ways. *) -Global Instance is0functor_uncurry_bifunctor {A B C : Type} - `{IsGraph A, IsGraph B, Is01Cat C} (F : A -> B -> C) `{!Is0Bifunctor F} - : Is0Functor (uncurry F). -Proof. - nrapply Build_Is0Functor. - intros a b [f g]. - exact (fmap11 F f g). -Defined. - -(** Any 1-bifunctor defines a canonical functor from the product category. *) -Global Instance is1functor_uncurry_bifunctor {A B C : Type} - `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) - `{!Is0Bifunctor F, !Is1Bifunctor F} - : Is1Functor (uncurry F). -Proof. - nrapply Build_Is1Functor. - - intros x y f g [p q]. - exact (fmap22 F p q). - - intros x. - refine (fmap_id (flip F _) _ $@@ fmap_id (F _) _ $@ _). - apply cat_idl. - - intros x y z f g. - refine (fmap_comp (flip F _) _ _ $@@ fmap_comp (F _) _ _ $@ _ ). - nrefine (cat_assoc_opp _ _ _ $@ _ $@ cat_assoc _ _ _). - nrefine (cat_assoc _ _ _ $@R _ $@ _ $@ (cat_assoc_opp _ _ _ $@R _)). - exact (_ $@L bifunctor_isbifunctor F _ _ $@R _). -Defined. - (** ** Flipping bifunctors *) Definition is0bifunctor_flip {A B C : Type} - (F : A -> B -> C) `{Is0Bifunctor A B C F} : Is0Bifunctor (flip F). + (F : A -> B -> C) `{Is01Cat A, Is01Cat B, Is01Cat C, !Is0Bifunctor F} + : Is0Bifunctor (flip F). Proof. - snrapply Build_Is0Bifunctor; exact _. + snrapply Build_Is0Bifunctor. + - change (Is0Functor (uncurry F o equiv_prod_symm _ _)). + exact _. + - exact _. + - exact _. Defined. Hint Immediate is0bifunctor_flip : typeclass_instances. Definition is1bifunctor_flip {A B C : Type} - (F : A -> B -> C) `{Is1Bifunctor A B C F} : Is1Bifunctor (flip F). +(F : A -> B -> C) `{H : Is1Bifunctor A B C F} + : Is1Bifunctor (flip F). Proof. snrapply Build_Is1Bifunctor. - 1,2: exact _. - intros a0 a1 f b0 b1 g. - symmetry. - rapply bifunctor_isbifunctor. + - change (Is1Functor (uncurry F o equiv_prod_symm _ _)). + exact _. + - exact _. + - exact _. + - intros b0 b1 g a0 a1 f. + exact (fmap11_is_fmap10_fmap01 F f g). + - intros b0 b1 g a0 a1 f. + exact (fmap11_is_fmap01_fmap10 F f g). Defined. Hint Immediate is1bifunctor_flip : typeclass_instances. @@ -290,10 +298,8 @@ Global Instance is0bifunctor_postcompose {A B C D : Type} `{IsGraph A, IsGraph B, IsGraph C, IsGraph D} (F : A -> B -> C) {bf : Is0Bifunctor F} (G : C -> D) `{!Is0Functor G} - : Is0Bifunctor (fun a b => G (F a b)). -Proof. - rapply Build_Is0Bifunctor. -Defined. + : Is0Bifunctor (fun a b => G (F a b)) + := {}. Global Instance is1bifunctor_postcompose {A B C D : Type} `{Is1Cat A, Is1Cat B, Is1Cat C, Is1Cat D} @@ -301,99 +307,88 @@ Global Instance is1bifunctor_postcompose {A B C D : Type} `{!Is0Bifunctor F} {bf : Is1Bifunctor F} : Is1Bifunctor (fun a b => G (F a b)). Proof. - nrapply Build_Is1Bifunctor. - 1,2: exact _. - intros a0 a1 f b0 b1 g. - refine ((fmap_comp G _ _)^$ $@ _ $@ fmap_comp G _ _). - rapply fmap2. - exact (bifunctor_isbifunctor F f g). -Defined. - -Global Instance is0bifunctor_precompose {A B C D : Type} - `{IsGraph A, IsGraph B, IsGraph C, IsGraph D} - (G : A -> B) (F : B -> C -> D) `{!Is0Functor G, !Is0Bifunctor F} - : Is0Bifunctor (fun a b => F (G a) b). -Proof. - rapply Build_Is0Bifunctor. - intros c. - change (Is0Functor (flip F c o G)). - exact _. -Defined. - -Global Instance is0bifunctor_precompose' {A B C D : Type} - `{IsGraph A, IsGraph B, IsGraph C, IsGraph D} - (G : A -> C) (F : B -> C -> D) `{!Is0Functor G, !Is0Bifunctor F} - : Is0Bifunctor (fun a b => F a (G b)). -Proof. - rapply Build_Is0Bifunctor. - intros a. - change (Is0Functor (flip F (G a))). - exact _. + snrapply Build_Is1Bifunctor. + 1-3: exact _. + - intros a0 a1 f b0 b1 g. + exact (fmap2 G (fmap11_is_fmap01_fmap10 F f g) $@ fmap_comp G _ _). + - intros a0 a1 f b0 b1 g. + exact (fmap2 G (fmap11_is_fmap10_fmap01 F f g) $@ fmap_comp G _ _). Defined. -Global Instance is1bifunctor_precompose {A B C D : Type} - `{Is1Cat A, Is1Cat B, Is1Cat C, Is1Cat D} - (G : A -> B) (F : B -> C -> D) - `{!Is0Functor G, !Is1Functor G, !Is0Bifunctor F, !Is1Bifunctor F} - : Is1Bifunctor (fun a b => F (G a) b). +Global Instance is0bifunctor_precompose {A B C D E : Type} + `{IsGraph A, IsGraph B, IsGraph C, IsGraph D, IsGraph E} + (G : A -> B) (K : E -> C) (F : B -> C -> D) + `{!Is0Functor G, !Is0Bifunctor F, !Is0Functor K} + : Is0Bifunctor (fun a b => F (G a) (K b)). Proof. - nrapply Build_Is1Bifunctor. + snrapply Build_Is0Bifunctor. + - change (Is0Functor (uncurry F o functor_prod G K)). + exact _. - exact _. - - unfold flip. - change (forall c, Is1Functor (flip F c o G)). + - intros e. + change (Is0Functor (flip F (K e) o G)). exact _. - - intros ? ? ?; apply (bifunctor_isbifunctor F). Defined. -Global Instance is1bifunctor_precompose' {A B C D : Type} - `{Is1Cat A, Is1Cat B, Is1Cat C, Is1Cat D} - (G : A -> C) (F : B -> C -> D) - `{!Is0Functor G, !Is1Functor G, !Is0Bifunctor F, !Is1Bifunctor F} - : Is1Bifunctor (fun b a => F b (G a)). +Global Instance is1bifunctor_precompose {A B C D E : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C, Is1Cat D, Is1Cat E} + (G : A -> B) (K : E -> C) (F : B -> C -> D) + `{!Is0Functor G, !Is1Functor G, !Is0Bifunctor F, !Is1Bifunctor F, + !Is0Functor K, !Is1Functor K} + : Is1Bifunctor (fun a b => F (G a) (K b)). Proof. - nrapply Build_Is1Bifunctor. + snrapply Build_Is1Bifunctor. + - change (Is1Functor (uncurry F o functor_prod G K)). + exact _. - exact _. - - unfold flip. - change (forall a, Is1Functor (fun b => F b (G a))). + - intros e. + change (Is1Functor (flip F (K e) o G)). exact _. - - intros a a' f b b' g. - simpl. - apply (bifunctor_isbifunctor F). + - intros a0 a1 f b0 b1 g. + exact (fmap11_is_fmap01_fmap10 F (fmap G f) (fmap K g)). + - intros a0 a1 f b0 b1 g. + exact (fmap11_is_fmap10_fmap01 F (fmap G f) (fmap K g)). Defined. Global Instance is0functor_uncurry_uncurry_left {A B C D E} (F : A -> B -> C) (G : C -> D -> E) - `{Is01Cat A, Is01Cat B, Is01Cat C, Is01Cat D, Is01Cat E, + `{IsGraph A, IsGraph B, IsGraph C, IsGraph D, IsGraph E, !Is0Bifunctor F, !Is0Bifunctor G} : Is0Functor (uncurry (uncurry (fun x y z => G (F x y) z))). Proof. - rapply is0functor_uncurry_bifunctor. + exact _. Defined. Global Instance is0functor_uncurry_uncurry_right {A B C D E} (F : A -> B -> D) (G : C -> D -> E) - `{Is01Cat A, Is01Cat B, Is01Cat C, Is01Cat D, Is01Cat E, + `{IsGraph A, IsGraph B, IsGraph C, IsGraph D, IsGraph E, !Is0Bifunctor F, !Is0Bifunctor G} : Is0Functor (uncurry (uncurry (fun x y z => G x (F y z)))). Proof. - apply is0functor_uncurry_bifunctor. - nrapply Build_Is0Bifunctor. - 1: exact _. - intros b. - change (Is0Functor (uncurry (fun x y => G x (F y b)))). - apply is0functor_uncurry_bifunctor. - apply (is0bifunctor_precompose' (flip F b) G). + snrapply Build_Is0Functor. + intros cab cab' [[h f] g]. + exact (fmap11 G h (fmap11 F f g)). Defined. +Definition fmap11_square {A B C : Type} `{Is1Cat A, Is1Cat B, Is1Cat C} + (F : A -> B -> C) `{!Is0Bifunctor F, !Is1Bifunctor F} + {a00 a20 a02 a22 : A} {f10 : a00 $-> a20} {f12 : a02 $-> a22} + {f01 : a00 $-> a02} {f21 : a20 $-> a22} + {b00 b20 b02 b22 : B} {g10 : b00 $-> b20} {g12 : b02 $-> b22} + {g01 : b00 $-> b02} {g21 : b20 $-> b22} + (p : Square f01 f21 f10 f12) (q : Square g01 g21 g10 g12) + : Square (fmap11 F f01 g01) (fmap11 F f21 g21) (fmap11 F f10 g10) (fmap11 F f12 g12) + := (fmap11_comp F _ _ _ _)^$ $@ fmap22 F p q $@ fmap11_comp F _ _ _ _. + (** ** Natural transformations between bifunctors *) (** We can show that an uncurried natural transformation between uncurried bifunctors by composing the naturality square in each variable. *) Global Instance is1natural_uncurry {A B C : Type} - `{IsGraph A, IsGraph B, Is1Cat C} + `{Is1Cat A, Is1Cat B, Is1Cat C} (F : A -> B -> C) - `{!Is0Bifunctor F} + `{!Is0Bifunctor F, !Is1Bifunctor F} (G : A -> B -> C) - `{!Is0Bifunctor G} + `{!Is0Bifunctor G, !Is1Bifunctor G} (alpha : uncurry F $=> uncurry G) (nat_l : forall b, Is1Natural (flip F b) (flip G b) (fun x : A => alpha (x, b))) (nat_r : forall a, Is1Natural (F a) (G a) (fun y : B => alpha (a, y))) @@ -401,6 +396,9 @@ Global Instance is1natural_uncurry {A B C : Type} Proof. intros [a b] [a' b'] [f f']; cbn in *. change (?w $o ?x $== ?y $o ?z) with (Square z w x y). - unfold fmap11. + nrapply vconcatL. + 1: rapply (fmap11_is_fmap01_fmap10 F). + nrapply vconcatR. + 2: rapply (fmap11_is_fmap01_fmap10 G). exact (hconcat (nat_l _ _ _ f) (nat_r _ _ _ f')). Defined. diff --git a/theories/WildCat/Monoidal.v b/theories/WildCat/Monoidal.v index 2ead4600768..38abf2de889 100644 --- a/theories/WildCat/Monoidal.v +++ b/theories/WildCat/Monoidal.v @@ -157,9 +157,8 @@ Section Associator. : associator x' y' z' $o fmap11 F f (fmap11 F g h) $== fmap11 F (fmap11 F f g) h $o associator x y z. Proof. - nrefine (_ $@ is1natural_associator_uncurried (x, y, z) (x', y', z') (f, g, h)). - refine (_ $@L ((_ $@R _) $@ cat_assoc _ _ _ $@ (_ $@L _^$))). - 1,2: rapply fmap_comp. + destruct assoc as [asso nat]. + exact (nat (x, y, z) (x', y', z') (f, g, h)). Defined. Local Definition associator_nat_l {x x' : A} (f : x $-> x') (y z : A) @@ -359,28 +358,22 @@ Section SymmetricBraid. Local Definition braid_nat {a b c d} (f : a $-> c) (g : b $-> d) : braid c d $o fmap11 F f g $== fmap11 F g f $o braid a b. Proof. - refine (is1natural_braiding_uncurried (a, b) (c, d) (f, g) $@ _). - refine (_ $@R _). - rapply fmap11_coh. + exact (is1natural_braiding_uncurried (a, b) (c, d) (f, g)). Defined. Local Definition braid_nat_l {a b c} (f : a $-> b) : braid b c $o fmap10 F f c $== fmap01 F c f $o braid a c. Proof. - refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). - - rapply fmap10_is_fmap11. - - exact (is1natural_braiding_uncurried (a, c) (b, c) (f, Id _)). - - exact ((fmap11_coh _ _ _)^$ $@ fmap01_is_fmap11 _ c f). + refine ((_ $@L (fmap10_is_fmap11 _ _ _)^$) $@ _ $@ (fmap01_is_fmap11 _ _ _ $@R _)). + exact (is1natural_braiding_uncurried (a, c) (b, c) (f, Id _)). Defined. (** This is just the inverse of above. *) Local Definition braid_nat_r {a b c} (g : b $-> c) : braid a c $o fmap01 F a g $== fmap10 F g a $o braid a b. Proof. - refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). - - rapply fmap01_is_fmap11. - - exact (is1natural_braiding_uncurried (a, b) (a, c) (Id _ , g)). - - exact ((fmap11_coh _ _ _)^$ $@ fmap10_is_fmap11 _ g a). + refine ((_ $@L (fmap01_is_fmap11 _ _ _)^$) $@ _ $@ (fmap10_is_fmap11 _ _ _ $@R _)). + exact (is1natural_braiding_uncurried (a, b) (a, c) (Id _ , g)). Defined. End SymmetricBraid. @@ -632,15 +625,12 @@ Section TwistConstruction. (** The second square is just the naturality of twist. *) nrapply vconcat. 2: apply twist_nat. - (** We rewrite one of the edges to make sure a functor application is grouped together. *) - nrapply vconcatL. - { refine ((cat_assoc _ _ _)^$ $@ (_^$ $@R _)). - rapply fmap_comp. } - (** This allows us to compose with bifunctor coherence on one side. *) - nrapply hconcat. - 1: rapply fmap11_coh. + nrapply hconcatL. + 2: nrapply hconcatR. + 1,3: symmetry; rapply fmap01_is_fmap11. (** Leaving us with a square with a functor application. *) - rapply fmap_square. + rapply fmap11_square. + 1: rapply vrefl. (** We are finally left with the naturality of braid. *) apply braid_nat. Defined. @@ -660,11 +650,7 @@ Section TwistConstruction. change (?w $o ?x $== ?y $o ?z) with (Square z w x y). nrapply vconcat. 2: rapply (isnat right_unitor f). - nrapply vconcatL. - 1: symmetry; rapply fmap01_is_fmap11. - nrapply vconcatR. - 2: symmetry; rapply fmap10_is_fmap11. - rapply braid_nat. + rapply braid_nat_r. - intros a. rapply compose_catie'. rapply catie_braid. diff --git a/theories/WildCat/Prod.v b/theories/WildCat/Prod.v index dfa66fbb4e8..8a4b08b23f5 100644 --- a/theories/WildCat/Prod.v +++ b/theories/WildCat/Prod.v @@ -227,3 +227,27 @@ Definition fmap11_uncurry {A B C : Type} `{IsGraph A, IsGraph B, IsGraph C} {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} (g : b0 $-> b1) : F a0 b0 $-> F a1 b1 := @fmap _ _ _ _ (uncurry F) H2 (a0, b0) (a1, b1) (f, g). + +Definition fmap_pair {A B C : Type} + `{IsGraph A, IsGraph B, IsGraph C} + (F : A * B -> C) `{!Is0Functor F} + {a0 a1 : A} (f : a0 $-> a1) {b0 b1 : B} (g : b0 $-> b1) + : F (a0, b0) $-> F (a1, b1) + := fmap (a := (a0, b0)) (b := (a1, b1)) F (f, g). + +Definition fmap_pair_comp {A B C : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C} + (F : A * B -> C) `{!Is0Functor F, !Is1Functor F} + {a0 a1 a2 : A} {b0 b1 b2 : B} + (f : a0 $-> a1) (h : b0 $-> b1) (g : a1 $-> a2) (i : b1 $-> b2) + : fmap_pair F (g $o f) (i $o h) + $== fmap_pair F g i $o fmap_pair F f h + := fmap_comp (a := (a0, b0)) (b := (a1, b1)) (c := (a2, b2)) F (f, h) (g, i). + +Definition fmap2_pair {A B C : Type} + `{Is1Cat A, Is1Cat B, Is1Cat C} + (F : A * B -> C) `{!Is0Functor F, !Is1Functor F} + {a0 a1 : A} {f f' : a0 $-> a1} (p : f $== f') + {b0 b1 : B} {g g' : b0 $-> b1} (q : g $== g') + : fmap_pair F f g $== fmap_pair F f' g' + := fmap2 F (a := (a0, b0)) (b := (a1, b1)) (f := (f, g)) (g := (f' ,g')) (p, q). diff --git a/theories/WildCat/Products.v b/theories/WildCat/Products.v index c051c5128c1..002ef175a61 100644 --- a/theories/WildCat/Products.v +++ b/theories/WildCat/Products.v @@ -440,44 +440,24 @@ Defined. Local Instance is0bifunctor_boolrec {A : Type} `{Is1Cat A} : Is0Bifunctor (Bool_rec A). Proof. - snrapply Build_Is0Bifunctor. - - intros x. - nrapply Build_Is0Functor. - intros a b f [|]. - + reflexivity. - + exact f. - - intros y. - nrapply Build_Is0Functor. - intros a b f [|]. - + exact f. - + reflexivity. + snrapply Build_Is0Bifunctor'. + 1,2: exact _. + snrapply Build_Is0Functor. + intros [a b] [a' b'] [f g] [ | ]. + - exact f. + - exact g. Defined. Local Instance is1bifunctor_boolrec {A : Type} `{Is1Cat A} : Is1Bifunctor (Bool_rec A). Proof. - nrapply Build_Is1Bifunctor. - - intros x. - nrapply Build_Is1Functor. - + intros a b f g p [|]. - 1: reflexivity. - exact p. - + intros a [|]; reflexivity. - + intros a b c f g [|]. - 1: exact (cat_idl _)^$. - reflexivity. - - intros y. - nrapply Build_Is1Functor. - + intros a b f g p [|]. - 1: exact p. - reflexivity. - + intros a [|]; reflexivity. - + intros a b c f g [|]. - 1: reflexivity. - exact (cat_idl _)^$. - - intros a a' f b b' g [|]. - + exact (cat_idl _ $@ (cat_idr _)^$). - + exact (cat_idr _ $@ (cat_idl _)^$). + snrapply Build_Is1Bifunctor'. + snrapply Build_Is1Functor. + - intros [a b] [a' b'] [f g] [f' g'] [p q] [ | ]. + + exact p. + + exact q. + - intros [a b] [ | ]; reflexivity. + - intros [a b] [a' b'] [a'' b''] [f f'] [g g'] [ | ]; reflexivity. Defined. (** As a special case of the product functor, restriction along [Bool_rec A] yields bifunctoriality of [cat_binprod]. *) @@ -502,28 +482,28 @@ Global Instance is0functor_cat_binprod_l {A : Type} `{HasBinaryProducts A} (y : A) : Is0Functor (fun x => cat_binprod x y). Proof. - exact (bifunctor_is0functor10 y). + exact (is0functor10_bifunctor y). Defined. Global Instance is1functor_cat_binprod_l {A : Type} `{HasBinaryProducts A} (y : A) : Is1Functor (fun x => cat_binprod x y). Proof. - exact (bifunctor_is1functor10 y). + exact (is1functor10_bifunctor y). Defined. Global Instance is0functor_cat_binprod_r {A : Type} `{HasBinaryProducts A} (x : A) : Is0Functor (fun y => cat_binprod x y). Proof. - exact (bifunctor_is0functor01 x). + exact (is0functor01_bifunctor x). Defined. Global Instance is1functor_cat_binprod_r {A : Type} `{HasBinaryProducts A} (x : A) : Is1Functor (fun y => cat_binprod x y). Proof. - exact (bifunctor_is1functor01 x). + exact (is1functor01_bifunctor x). Defined. (** [cat_binprod_corec] is also functorial in each morphsism. *) @@ -558,12 +538,8 @@ Definition cat_pr1_fmap10_binprod {A : Type} `{HasBinaryProducts A} Definition cat_pr1_fmap11_binprod {A : Type} `{HasBinaryProducts A} {w x y z : A} (f : w $-> y) (g : x $-> z) - : cat_pr1 $o fmap11 (fun x y => cat_binprod x y) f g $== f $o cat_pr1. -Proof. - refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ cat_assoc _ _ _ $@ _). - 1: nrapply cat_binprod_beta_pr1. - exact (cat_idl _ $@ cat_binprod_beta_pr1 _ _). -Defined. + : cat_pr1 $o fmap11 (fun x y => cat_binprod x y) f g $== f $o cat_pr1 + := cat_binprod_beta_pr1 _ _. Definition cat_pr2_fmap01_binprod {A : Type} `{HasBinaryProducts A} (a : A) {x y : A} (g : x $-> y) @@ -577,12 +553,8 @@ Definition cat_pr2_fmap10_binprod {A : Type} `{HasBinaryProducts A} Definition cat_pr2_fmap11_binprod {A : Type} `{HasBinaryProducts A} {w x y z : A} (f : w $-> y) (g : x $-> z) - : cat_pr2 $o fmap11 (fun x y => cat_binprod x y) f g $== g $o cat_pr2. -Proof. - refine ((cat_assoc _ _ _)^$ $@ (_ $@R _) $@ cat_assoc _ _ _ $@ (_ $@L _)). - 1: nrapply cat_binprod_beta_pr2. - nrapply cat_pr2_fmap10_binprod. -Defined. + : cat_pr2 $o fmap11 (fun x y => cat_binprod x y) f g $== g $o cat_pr2 + := cat_binprod_beta_pr2 _ _. (** *** Symmetry of binary products *) @@ -644,8 +616,7 @@ Section Symmetry. - snrapply Build_Braiding. + exact cat_binprod_swap. + intros [a b] [c d] [f g]; cbn in f, g. - nrefine (cat_binprod_swap_nat f g $@ (_ $@R _)). - rapply fmap11_coh. + exact(cat_binprod_swap_nat f g). - exact cat_binprod_swap_cat_binprod_swap. Defined. @@ -732,12 +703,11 @@ Section Associativity. 2: nrapply cat_pr2_fmap11_binprod. refine (_ $@ (_ $@L _^$) $@ (cat_assoc _ _ _)^$). 2: nrapply cat_binprod_beta_pr2. - nrefine (_ $@ cat_assoc_opp _ _ _). - nrefine (_ $@ (_ $@L _)). - 2: rapply fmap11_coh. - nrefine (cat_assoc_opp _ _ _ $@ (_ $@R _) $@ cat_assoc _ _ _). - refine ((fmap01_comp _ _ _ _)^$ $@ fmap02 _ _ _ $@ fmap01_comp _ _ _ _). - nrapply cat_pr2_fmap11_binprod. + refine (_^$ $@ _ $@ _). + 1,3: rapply fmap11_comp. + rapply fmap22. + 1: exact (cat_idl _ $@ (cat_idr _)^$). + nrapply cat_binprod_beta_pr2. Defined. Local Existing Instance symmetricbraiding_binprod. diff --git a/theories/WildCat/Yoneda.v b/theories/WildCat/Yoneda.v index 82b6ea503d3..93053cec156 100644 --- a/theories/WildCat/Yoneda.v +++ b/theories/WildCat/Yoneda.v @@ -44,13 +44,20 @@ Proof. Defined. Global Instance is0bifunctor_hom {A} `{Is01Cat A} - : Is0Bifunctor (A:=A^op) (B:=A) (C:=Type) (@Hom A _) - := is0bifunctor_functor_uncurried _. + : Is0Bifunctor (A:=A^op) (B:=A) (C:=Type) (@Hom A _). +Proof. + nrapply Build_Is0Bifunctor'. + 1-2: exact _. + exact is0functor_hom. +Defined. (** While it is possible to prove the bifunctor coherence condition from [Is1Cat_Strong], 1-functoriality requires morphism extensionality.*) Global Instance is1bifunctor_hom {A} `{Is1Cat A} `{HasMorExt A} - : Is1Bifunctor (A:=A^op) (B:=A) (C:=Type) (@Hom A _) - := is1bifunctor_functor_uncurried _. + : Is1Bifunctor (A:=A^op) (B:=A) (C:=Type) (@Hom A _). +Proof. + nrapply Build_Is1Bifunctor'. + exact is1functor_hom. +Defined. Definition fun01_hom {A} `{Is01Cat A} : Fun01 (A^op * A) Type @@ -255,12 +262,19 @@ Proof. Defined. Global Instance is0bifunctor_hom_0gpd {A : Type} `{Is1Cat A} - : Is0Bifunctor (A:=A^op) (B:=A) (C:=ZeroGpd) (opyon_0gpd (A:=A)) - := is0bifunctor_functor_uncurried _. + : Is0Bifunctor (A:=A^op) (B:=A) (C:=ZeroGpd) (opyon_0gpd (A:=A)). +Proof. + snrapply Build_Is0Bifunctor'. + 1,2: exact _. + exact is0functor_hom_0gpd. +Defined. Global Instance is1bifunctor_hom_0gpd {A : Type} `{Is1Cat A} - : Is1Bifunctor (A:=A^op) (B:=A) (C:=ZeroGpd) (opyon_0gpd (A:=A)) - := is1bifunctor_functor_uncurried _. + : Is1Bifunctor (A:=A^op) (B:=A) (C:=ZeroGpd) (opyon_0gpd (A:=A)). +Proof. + snrapply Build_Is1Bifunctor'. + exact is1functor_hom_0gpd. +Defined. Global Instance is0functor_opyon_0gpd {A : Type} `{Is1Cat A} (a : A) : Is0Functor (opyon_0gpd a).