diff --git a/theories/Basics/Notations.v b/theories/Basics/Notations.v index abde0e4f587..492c8d57099 100644 --- a/theories/Basics/Notations.v +++ b/theories/Basics/Notations.v @@ -172,7 +172,7 @@ Reserved Notation "s ^v$" (at level 20). Reserved Infix "@@h" (at level 30). Reserved Infix "@@v" (at level 30). Reserved Infix "@lr" (at level 30). -Reserved Notation "x '@D' y" (at level 20). +Reserved Notation "x '@Dp' y" (at level 20). Reserved Notation "x '@Dr' y" (at level 20). Reserved Notation "x '@Dl' y" (at level 20). Reserved Notation "x '^D'" (at level 3). diff --git a/theories/Cubical/DPath.v b/theories/Cubical/DPath.v index 3a19c809ec3..873deac2cc7 100644 --- a/theories/Cubical/DPath.v +++ b/theories/Cubical/DPath.v @@ -109,7 +109,7 @@ Proof. exact concat. Defined. -Notation "x '@D' y" := (dp_concat x y) : dpath_scope. +Notation "x '@Dp' y" := (dp_concat x y) : dpath_scope. (* Concatenation of dependent paths with non-dependent paths *) Definition dp_concat_r {A} {P : A -> Type} {a0 a1} @@ -143,7 +143,7 @@ Notation "x '^D'" := (dp_inverse x) : dpath_scope. (* dp_apD distributes over concatenation *) Definition dp_apD_pp (A : Type) (P : A -> Type) (f : forall a, P a) {a0 a1 a2 : A} (p : a0 = a1) (q : a1 = a2) - : dp_apD f (p @ q) = (dp_apD f p) @D (dp_apD f q). + : dp_apD f (p @ q) = (dp_apD f p) @Dp (dp_apD f q). Proof. by destruct p, q. Defined. @@ -158,7 +158,7 @@ Defined. (* dp_const preserves concatenation *) Definition dp_const_pp {A B : Type} {a0 a1 a2 : A} {p : a0 = a1} {q : a1 = a2} {x y z : B} (r : x = y) (s : y = z) - : dp_const (p:=p @ q) (r @ s) = (dp_const (p:=p) r) @D (dp_const (p:=q) s). + : dp_const (p:=p @ q) (r @ s) = (dp_const (p:=p) r) @Dp (dp_const (p:=q) s). Proof. by destruct p,q. Defined. @@ -169,28 +169,28 @@ Section DGroupoid. {b0 : P a0} {b1 : P a1} {dp : DPath P p b0 b1}. Definition dp_concat_p1 - : DPath (fun t => DPath _ t _ _) (concat_p1 _) (dp @D 1) dp. + : DPath (fun t => DPath _ t _ _) (concat_p1 _) (dp @Dp 1) dp. Proof. destruct p. apply concat_p1. Defined. Definition dp_concat_1p - : DPath (fun t => DPath _ t _ _) (concat_1p _) (1 @D dp) dp. + : DPath (fun t => DPath _ t _ _) (concat_1p _) (1 @Dp dp) dp. Proof. destruct p. apply concat_1p. Defined. Definition dp_concat_Vp - : DPath (fun t => DPath _ t _ _) (concat_Vp _) (dp^D @D dp) 1. + : DPath (fun t => DPath _ t _ _) (concat_Vp _) (dp^D @Dp dp) 1. Proof. destruct p. apply concat_Vp. Defined. Definition dp_concat_pV - : DPath (fun t => DPath _ t _ _) (concat_pV _) (dp @D dp^D) 1. + : DPath (fun t => DPath _ t _ _) (concat_pV _) (dp @Dp dp^D) 1. Proof. destruct p. apply concat_pV. @@ -204,7 +204,7 @@ Section DGroupoid. Definition dp_concat_pp_p : DPath (fun t => DPath _ t _ _) (concat_pp_p _ _ _) - ((dp @D dq) @D dr) (dp @D (dq @D dr)). + ((dp @Dp dq) @Dp dr) (dp @Dp (dq @Dp dr)). Proof. destruct p, q, r. apply concat_pp_p. @@ -212,7 +212,7 @@ Section DGroupoid. Definition dp_concat_p_pp : DPath (fun t => DPath _ t _ _) (concat_p_pp _ _ _) - (dp @D (dq @D dr)) ((dp @D dq) @D dr). + (dp @Dp (dq @Dp dr)) ((dp @Dp dq) @Dp dr). Proof. destruct p, q, r. apply concat_p_pp. diff --git a/theories/Cubical/DPathSquare.v b/theories/Cubical/DPathSquare.v index 7e4f93fa90d..4f9bdafe0ed 100644 --- a/theories/Cubical/DPathSquare.v +++ b/theories/Cubical/DPathSquare.v @@ -56,7 +56,7 @@ Definition equiv_ds_dpath {A} (P : A -> Type) {a00 a10 a01 a11 : A} (s : px0 @ p1x = p0x @ px1) {b00 b10 b01 b11} {qx0 : DPath P px0 b00 b10} {qx1 : DPath P px1 b01 b11} {q0x : DPath P p0x b00 b01} {q1x : DPath P p1x b10 b11} - : DPath (fun p => DPath P p b00 b11) s (qx0 @D q1x) (q0x @D qx1) + : DPath (fun p => DPath P p b00 b11) s (qx0 @Dp q1x) (q0x @Dp qx1) <~> DPathSquare P (sq_path s) qx0 qx1 q0x q1x. Proof. set (s' := sq_path s). diff --git a/theories/Homotopy/ClassifyingSpace.v b/theories/Homotopy/ClassifyingSpace.v index 24300770a75..46fccb9d5ab 100644 --- a/theories/Homotopy/ClassifyingSpace.v +++ b/theories/Homotopy/ClassifyingSpace.v @@ -59,7 +59,7 @@ Module Export ClassifyingSpace. (bbase' : P bbase) (bloop' : forall x, DPath P (bloop x) bbase' bbase') (bloop_pp' : forall x y, DPathSquare P (sq_G1 (bloop_pp x y)) - (bloop' (x * y)) ((bloop' x) @D (bloop' y)) 1 1) x : P x + (bloop' (x * y)) ((bloop' x) @Dp (bloop' y)) 1 1) x : P x := match x with bbase => (fun _ _ => bbase') end bloop' bloop_pp'. @@ -70,7 +70,7 @@ Module Export ClassifyingSpace. `{forall x, IsTrunc 1 (P x)} (bbase' : P bbase) (bloop' : forall x, DPath P (bloop x) bbase' bbase') (bloop_pp' : forall x y, DPathSquare P (sq_G1 (bloop_pp x y)) - (bloop' (x * y)) ((bloop' x) @D (bloop' y)) 1 1) (x : G) + (bloop' (x * y)) ((bloop' x) @Dp (bloop' y)) 1 1) (x : G) : dp_apD (ClassifyingSpace_ind P bbase' bloop' bloop_pp') (bloop x) = bloop' x. Proof. Admitted. diff --git a/theories/Homotopy/Smash.v b/theories/Homotopy/Smash.v index 46ed78ce5b1..5333209e686 100644 --- a/theories/Homotopy/Smash.v +++ b/theories/Homotopy/Smash.v @@ -118,7 +118,7 @@ Section Smash. (Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl) (Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a b : X) : dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (gluel' a b) - = (Pgl a) @D ((Pgl b)^D). + = (Pgl a) @Dp ((Pgl b)^D). Proof. unfold gluel'. rewrite dp_apD_pp, dp_apD_V. @@ -130,7 +130,7 @@ Section Smash. (Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl) (Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a b : Y) : dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (gluer' a b) - = (Pgr a) @D ((Pgr b)^D). + = (Pgr a) @Dp ((Pgr b)^D). Proof. unfold gluer'. rewrite dp_apD_pp, dp_apD_V. @@ -142,7 +142,7 @@ Section Smash. (Pgl : forall a, DPath P (gluel a) (Psm a pt) Pl) (Pgr : forall b, DPath P (gluer b) (Psm pt b) Pr) (a : X) (b : Y) : dp_apD (Smash_ind Psm Pl Pr Pgl Pgr) (glue a b) - = ((Pgl a) @D ((Pgl pt)^D)) @D ((Pgr pt) @D ((Pgr b)^D)). + = ((Pgl a) @Dp ((Pgl pt)^D)) @Dp ((Pgr pt) @Dp ((Pgr b)^D)). Proof. by rewrite dp_apD_pp, Smash_ind_beta_gluel', Smash_ind_beta_gluer'. Qed.