-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmr_gan.py
342 lines (307 loc) · 17.8 KB
/
mr_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os, sys, time, glob, librosa, itertools, argparse
os.environ["KERAS_BACKEND"] = 'theano'
import numpy as np
import cPickle as pickle
from sklearn.utils import shuffle
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
from keras.models import Model, Sequential
from keras.layers import Input, Dense, Activation, Dropout
from keras.layers.normalization import BatchNormalization
from keras.layers.noise import GaussianNoise
from keras.regularizers import l2
from keras.optimizers import Adam
from keras import losses
from keras import backend as K
'''
Material Recognition GAN
'''
def dataset(modalities=0, forcetempTime=4, contactmicTime=0.2, leaveObjectOut=False, verbose=False):
materials = ['plastic', 'glass', 'fabric', 'metal', 'wood', 'ceramic']
X = []
y = []
objects = dict()
for m, material in enumerate(materials):
if verbose:
print 'Processing', material
sys.stdout.flush()
with open('data_processed/processed_0.1sbefore_%s_times_%.2f_%.2f.pkl' % (material, forcetempTime, contactmicTime), 'rb') as f:
allData = pickle.load(f)
for j, (objName, objData) in enumerate(allData.iteritems()):
if leaveObjectOut:
objects[objName] = {'x': [], 'y': []}
X = objects[objName]['x']
y = objects[objName]['y']
for i in xrange(len(objData['temperature'])):
y.append(m)
if modalities > 2:
# Mel-scaled power (energy-squared) spectrogram
sr = 48000
S = librosa.feature.melspectrogram(np.array(objData['contact'][i]), sr=sr, n_mels=128)
# Convert to log scale (dB)
log_S = librosa.logamplitude(S, ref_power=np.max)
if modalities == 0:
X.append(objData['force0'][i] + objData['force1'][i])
elif modalities == 1:
X.append(objData['temperature'][i])
elif modalities == 2:
X.append(objData['temperature'][i] + objData['force0'][i] + objData['force1'][i])
elif modalities == 3:
X.append(log_S.flatten())
elif modalities == 4:
X.append(objData['temperature'][i] + log_S.flatten().tolist())
elif modalities == 5:
X.append(objData['temperature'][i] + objData['force0'][i] + objData['force1'][i] + log_S.flatten().tolist())
elif modalities == 6:
X.append(objData['force0'][i] + objData['force1'][i] + log_S.flatten().tolist())
if leaveObjectOut:
return objects
else:
X = np.array(X)
y = np.array(y)
if verbose:
print 'X:', np.shape(X), 'y:', np.shape(y)
return X, y
def mr_gan(X, y, percentlabeled=50, percentunlabeled=None, epochs=100, trainTestSets=None, verbose=False):
# Non Deterministic output
np.random.seed(np.random.randint(1e9))
noise_size = 100
batchSize = 50
unlabeled_weight = 1
materials = ['plastic', 'glass', 'fabric', 'metal', 'wood', 'ceramic']
test_ratio = 200*len(materials)
num_labeled_examples = int(10*percentlabeled)
if percentunlabeled is not None:
num_unlabeled_examples = int(10*percentunlabeled)
# Split into train and test sets
if trainTestSets is None:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_ratio, stratify=y)
else:
X_train, X_test, y_train, y_test = trainTestSets
if verbose:
print 'Num of class examples in test set:', [np.sum(y_test == i) for i in xrange(len(materials))]
print 'X_train:', np.shape(X_train), 'y_train:', np.shape(y_train), 'X_test:', np.shape(X_test), 'y_test:', np.shape(y_test)
# Scale data to zero mean and unit variance
scaler = preprocessing.StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# Select labeled data
X_train, y_train = shuffle(X_train, y_train)
x_labeled = np.concatenate([X_train[y_train==j][:num_labeled_examples] for j in xrange(len(materials))], axis=0)
y_labeled = np.concatenate([[j]*num_labeled_examples for j in xrange(len(materials))], axis=0)
if verbose:
print 'x_labeled:', np.shape(x_labeled), 'y_labeled:', np.shape(y_labeled)
if percentunlabeled is not None:
x_unlabeled = np.concatenate([X_train[y_train==j][:num_labeled_examples+num_unlabeled_examples] for j in xrange(len(materials))], axis=0)
# Generator
gen_input = Input(shape=(noise_size,))
x = Dense(500, activation='softplus')(gen_input)
x = BatchNormalization(epsilon=2e-5, momentum=0.9)(x)
x = Dense(500, activation='softplus')(x)
gen_output = Dense(X_train.shape[1])(x)
# Discriminator
disc_input = Input(shape=(X_train.shape[1],))
x = GaussianNoise(0.3)(disc_input)
x = Dense(1000, activation='relu')(x)
x = GaussianNoise(0.5)(x)
x = Dense(500, activation='relu')(x)
x = GaussianNoise(0.5)(x)
x = Dense(250, activation='relu')(x)
x = GaussianNoise(0.5)(x)
x = Dense(250, activation='relu')(x)
x = GaussianNoise(0.5)(x)
disc_mid_output = Dense(250, activation='relu')(x)
disc_output = Dense(len(materials))(disc_mid_output)
# Formal models to be used with placeholders
generator = Model(inputs=gen_input, outputs=gen_output)
discriminator = Model(inputs=disc_input, outputs=disc_output)
mid_output = Model(inputs=disc_input, outputs=disc_mid_output)
# Define placeholders for data input and output
labels = K.placeholder(ndim=1, dtype='int32')
x_lab = K.placeholder(shape=(None, X_train.shape[1]))
x_unl = K.placeholder(shape=(None, X_train.shape[1]))
x_noise = K.placeholder(shape=(None, noise_size))
output_labeled = discriminator(x_lab)
output_unlabeled = discriminator(x_unl)
output_fake = discriminator(generator(x_noise))
# Define loss for discriminator
label_lab = output_labeled[K.arange(batchSize), labels]
label_unl = K.logsumexp(output_unlabeled, axis=1)
loss_lab = -K.mean(label_lab) + K.mean(K.logsumexp(output_labeled, axis=1))
loss_unl = -0.5*K.mean(label_unl) + 0.5*K.mean(K.softplus(K.logsumexp(output_unlabeled, axis=1))) + 0.5*K.mean(K.softplus(K.logsumexp(output_fake, axis=1)))
# Define loss for generator with feature matching
mom_gen = K.mean(mid_output(generator(x_noise)), axis=0)
mom_real = K.mean(mid_output(x_unl), axis=0)
loss_gen = K.mean(K.square(mom_gen - mom_real))
# No feature matching
# mom_gen = K.mean(discriminator(generator(x_noise)), axis=0)
# mom_real = K.mean(discriminator(x_unl), axis=0)
# loss_gen = K.mean(K.square(mom_gen - mom_real))
# Training and test errors
train_err = K.mean(K.not_equal(K.argmax(output_labeled, axis=1), labels))
test_err = K.mean(K.not_equal(K.argmax(output_labeled, axis=1), labels))
# Define updates for weights based on loss functions
adam = Adam(lr=0.0006, beta_1=0.5)
disc_param_updates = adam.get_updates(params=discriminator.trainable_weights, loss=loss_lab + unlabeled_weight*loss_unl)
gen_param_updates = adam.get_updates(params=generator.trainable_weights, loss=loss_gen)
# Define training and test functions
train_batch_disc = K.function(inputs=[K.learning_phase(), x_lab, labels, x_unl, x_noise], outputs=[loss_lab, loss_unl, train_err], updates=disc_param_updates)
train_batch_gen = K.function(inputs=[K.learning_phase(), x_unl, x_noise], outputs=loss_gen, updates=gen_param_updates)
test_batch = K.function(inputs=[K.learning_phase(), x_lab, labels], outputs=test_err)
numBatchesTrain = X_train.shape[0] / batchSize
numBatchesTest = X_test.shape[0] / batchSize
train_phase = 1
test_phase = 0
if verbose:
print 'Epochs:', epochs
print 'Batch size:', batchSize
print 'Training batches per epoch:', numBatchesTrain
print 'Testing batches per epoch:', numBatchesTest
for epoch in xrange(1, epochs+1):
begin = time.time()
loss_lab = 0.0
loss_unl = 0.0
train_err = 0.0
# Random permutations of training data
inds = np.concatenate([np.random.permutation(x_labeled.shape[0]) for _ in xrange(X_train.shape[0] / x_labeled.shape[0])] + [np.random.permutation(X_train.shape[0] % x_labeled.shape[0])])
trainx = x_labeled[inds]
trainy = y_labeled[inds]
if percentunlabeled is None:
trainx_unl = X_train[np.random.permutation(X_train.shape[0])]
trainx_unl2 = X_train[np.random.permutation(X_train.shape[0])]
trainx_unl3 = X_train[np.random.permutation(X_train.shape[0])]
else:
inds = np.concatenate([np.random.permutation(x_unlabeled.shape[0]) for _ in xrange(X_train.shape[0] / x_unlabeled.shape[0])] + [np.random.permutation(X_train.shape[0] % x_unlabeled.shape[0])])
trainx_unl = x_unlabeled[inds]
inds = np.concatenate([np.random.permutation(x_unlabeled.shape[0]) for _ in xrange(X_train.shape[0] / x_unlabeled.shape[0])] + [np.random.permutation(X_train.shape[0] % x_unlabeled.shape[0])])
trainx_unl2 = x_unlabeled[inds]
inds = np.concatenate([np.random.permutation(x_unlabeled.shape[0]) for _ in xrange(X_train.shape[0] / x_unlabeled.shape[0])] + [np.random.permutation(X_train.shape[0] % x_unlabeled.shape[0])])
trainx_unl3 = x_unlabeled[inds]
for t in xrange(numBatchesTrain):
# Train discriminator
noise = np.random.normal(0, 1, size=[batchSize, noise_size])
ll, lu, te = train_batch_disc([train_phase, trainx[t*batchSize:(t+1)*batchSize], trainy[t*batchSize:(t+1)*batchSize], trainx_unl[t*batchSize:(t+1)*batchSize], noise])
loss_lab += ll
loss_unl += lu
train_err += te
# Train generator
noise = np.random.normal(0, 1, size=[batchSize, noise_size])
loss = train_batch_gen([train_phase, trainx_unl2[t*batchSize:(t+1)*batchSize], noise])
loss_lab /= numBatchesTrain
loss_unl /= numBatchesTrain
train_err /= numBatchesTrain
# Test discriminator
test_err = 0.0
for t in xrange(numBatchesTest):
test_err += test_batch([test_phase, X_test[t*batchSize:(t+1)*batchSize], y_test[t*batchSize:(t+1)*batchSize]])
test_err /= numBatchesTest
# Report results
if verbose:
print 'Epoch %d, time = %ds, loss labeled = %.4f, loss unlabeled = %.4f, train error = %.4f, test error = %.4f' % (epoch, time.time()-begin, loss_lab, loss_unl, train_err, test_err)
sys.stdout.flush()
testerror = test_batch([test_phase, X_test, y_test])
if verbose:
print 'Test error:', testerror, test_err
sys.stdout.flush()
return testerror
if __name__ == '__main__':
modalities = ['Force', 'Temperature', 'Force and Temperature', 'Contact mic', 'Temperature and Contact Mic', 'Force, Temperature, and Contact Mic', 'Force and Contact Mic']
parser = argparse.ArgumentParser(description='Semi-supervised learning with GANs for material recognition on haptic data.')
parser.add_argument('-t', '--tables', nargs='+', help='[Required] Tables to recompute', required=True)
parser.add_argument('-v', '--verbose', help='Verbose', action='store_true')
args = parser.parse_args()
if '1' in args.tables:
# Test various amounts of labeled training data
print '\n', '-'*25, 'Testing various amounts of labeled training data', '-'*25
print '-'*100
for modality in xrange(len(modalities)):
print '-'*25, modalities[modality], 'modality', '-'*25
X, y = dataset(modalities=modality)
for percent in [1, 2, 4, 8, 16, 50, 100]:
print '-'*15, 'Percentage of training data labeled: %d%%' % percent, '-'*15
errors = []
# Average over Stratified 6-fold. Training set: 6000, Test set: 1200
skf = StratifiedKFold(n_splits=6, shuffle=True)
for trainIdx, testIdx in skf.split(X, y):
errors.append(mr_gan(None, None, percentlabeled=percent, trainTestSets=[X[trainIdx], X[testIdx], y[trainIdx], y[testIdx]], verbose=args.verbose))
print 'Test error:', errors[-1], 'Test accuracy:', 1.0-errors[-1]
sys.stdout.flush()
print 'Average error:', np.mean(errors), 'Average accuracy:', np.mean(1.0-np.array(errors))
sys.stdout.flush()
if '3' in args.tables:
# Test generalization with leave-one-object-out validation
print '\n', '-'*25, 'Testing generalization with leave-one-object-out validation', '-'*25
print '-'*100
for modality in [2, 5]:
print '-'*25, modalities[modality], 'modality', '-'*25
objects = dataset(modalities=modality, leaveObjectOut=True)
for percent in [1, 4, 16, 50, 100]:
print '-'*15, 'Percentage of training data labeled: %d%%' % percent, '-'*15
errors = []
# Average over all 72 training and test set splits
for objName, objData in objects.iteritems():
Xtest = np.array(objData['x'])
ytest = np.array(objData['y'])
Xtrain = np.array(list(itertools.chain.from_iterable([data['x'] for name, data in objects.iteritems() if name != objName])))
ytrain = np.array(list(itertools.chain.from_iterable([data['y'] for name, data in objects.iteritems() if name != objName])))
errors.append(mr_gan(None, None, percentlabeled=percent, trainTestSets=[Xtrain, Xtest, ytrain, ytest], verbose=args.verbose))
print objName, 'Test error:', errors[-1], 'Test accuracy:', 1.0-errors[-1]
sys.stdout.flush()
print 'Average leave-one-object-out error:', np.mean(errors), 'Average accuracy:', np.mean(1.0-np.array(errors))
sys.stdout.flush()
if '5' in args.tables:
# Test various lengths of contact time in training data
print '\n', '-'*25, 'Testing various lengths of contact time in training data', '-'*25
print '-'*100
for modality in xrange(3):
print '-'*25, modalities[modality], 'modality', '-'*25
for ftTime in [4, 3, 2, 1, 0.5, 0.2, 0.1]:
print '-'*15, 'Length of training data: %.1fs' % ftTime, '-'*15
X, y = dataset(modalities=modality, forcetempTime=ftTime)
errors = []
# Average over Stratified 6-fold. Training set: 6000, Test set: 1200
skf = StratifiedKFold(n_splits=6, shuffle=True)
for trainIdx, testIdx in skf.split(X, y):
errors.append(mr_gan(None, None, percentlabeled=100, trainTestSets=[X[trainIdx], X[testIdx], y[trainIdx], y[testIdx]], verbose=args.verbose))
print 'Test error:', errors[-1], 'Test accuracy:', 1.0-errors[-1]
sys.stdout.flush()
print 'Average error:', np.mean(errors), 'Average accuracy:', np.mean(1.0-np.array(errors))
sys.stdout.flush()
print '\n', '-'*25, 'Testing various lengths of contact time in training data', '-'*25
print '-'*100
print '-'*25, modalities[3], 'modality', '-'*25
for cTime in [1, 0.7, 0.5, 0.3, 0.2, 0.1, 0.05]:
print '-'*15, 'Length of training data: %.1fs' % cTime, '-'*15
X, y = dataset(modalities=3, contactmicTime=cTime)
errors = []
# Average over Stratified 6-fold. Training set: 6000, Test set: 1200
skf = StratifiedKFold(n_splits=6, shuffle=True)
for trainIdx, testIdx in skf.split(X, y):
errors.append(mr_gan(None, None, percentlabeled=100, trainTestSets=[X[trainIdx], X[testIdx], y[trainIdx], y[testIdx]], verbose=args.verbose))
print 'Test error:', errors[-1], 'Test accuracy:', 1.0-errors[-1]
sys.stdout.flush()
print 'Average error:', np.mean(errors), 'Average accuracy:', np.mean(1.0-np.array(errors))
sys.stdout.flush()
if '6' in args.tables:
# Test performance as amount of unlabeled data increases and amount of labeled data remains fixed
print '\n', '-'*25, 'Testing performance as quantity of unlabeled data increases', '-'*25
print '-'*100
for modality in [2, 5]:
print '-'*25, modalities[modality], 'modality', '-'*25
X, y = dataset(modalities=modality)
# for percentlabeled in [4, 8, 16]:
for percentlabeled in [4]:
print '-'*15, 'Percentage of training data labeled: %d%%' % percentlabeled, '-'*15
for percentunlabeled in [0, 4, 8, 16, 32, 64, 100-percentlabeled]:
# Unlabeled examples per class: 0, 40, 80, 160, 320, 640, 960
print '-'*15, 'Percentage of training data unlabeled: %d%%' % percentunlabeled, '-'*15
errors = []
# Average over Stratified 6-fold. Training set: 6000, Test set: 1200
skf = StratifiedKFold(n_splits=6, shuffle=True)
for trainIdx, testIdx in skf.split(X, y):
errors.append(mr_gan(None, None, percentlabeled=percentlabeled, percentunlabeled=percentunlabeled, trainTestSets=[X[trainIdx], X[testIdx], y[trainIdx], y[testIdx]], verbose=args.verbose))
print 'Test error:', errors[-1], 'Test accuracy:', 1.0-errors[-1]
sys.stdout.flush()
print 'Average error:', np.mean(errors), 'Average accuracy:', np.mean(1.0-np.array(errors))
sys.stdout.flush()