-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrfmid_retinal_disease_classification.py
346 lines (309 loc) · 11.9 KB
/
rfmid_retinal_disease_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import warnings
import pytorch_lightning as pl
import toml
import torch
import torchmetrics.classification
from pytorch_lightning.callbacks import ModelCheckpoint
from torch import nn
from torch import optim
from torchvision import models
from data.data_rfmid import get_rfmid_loaders
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
torch.multiprocessing.set_sharing_strategy("file_system")
warnings.filterwarnings("ignore", category=UserWarning)
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# set to False if not using wandb
WANDB = True
if WANDB:
from pytorch_lightning.loggers import WandbLogger
CHECKPOINT_PATH = None
CHECKPOINTS_BASE_PATH = toml.load("paths.toml")["CHECKPOINTS_BASE_PATH"]
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "supervised_baseline/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_risks_burdens_inner_none/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_risks_burdens_inner_h1/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_risks_burdens_outer_none/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_risks_burdens_outer_h1/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_risks_burdens_outer_h12/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_snps_none/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_snps_h1/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_raw_snps_h12/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_risk_scores_gen_none/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_risk_scores_gen_h1/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_risk_scores_gen_h12/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_burden_scores_gen_none/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_burden_scores_gen_h1/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "cm_r50_burden_scores_gen_h12/last.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "barlow_r50_proj128/epoch_99-step_170399.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "byol_r50_proj128/epoch_99-step_170399.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "simsiam_r50_proj128/epoch_99-step_170399.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "simclr_r50_proj128/epoch_99-step_170399.ckpt"
# CHECKPOINT_PATH = CHECKPOINTS_BASE_PATH + "nnclr_r50_proj128/epoch_99-step_170399.ckpt"
FROZEN_ENCODER = False
n_classes = 43
epochs = 50
lr = 1e-3
basemodel = models.resnet50
loader_param = {"batch_size": 16, "size": 448}
pretrained_imagenet = False
use_scheduler = False
accumulate_grad_batches = 4
optimizer = "adam"
optimizer_dict = dict(weight_decay=1e-5)
# patience = 10
# optimizer = "sgd"
# optimizer_dict = dict(weight_decay=5e-4, momentum=0.9, nesterov=True)
pl.seed_everything(42, workers=True)
def acc_RFMiD(y, y_pred):
acc = torchmetrics.classification.accuracy.Accuracy(num_classes=n_classes).to(
DEVICE
)
return acc(y_pred, y)
def auc_roc_score(y, y_pred):
auc = torchmetrics.classification.AUROC(num_classes=n_classes, average="micro").to(
DEVICE
)
return auc(y_pred, y)
def load_from_state_dict_supervised(model, state_dict):
"""Loads the model weights from the state dictionary."""
# step 1: filter state dict
model_keys_prefixes = []
for okey, oitem in model.state_dict().items():
model_keys_prefixes.append(okey.split(".")[0])
new_state_dict = {}
index = 0
for key, item in state_dict.items():
# remove the "model." prefix from the state dict key
all_key_parts = [model_keys_prefixes[index]]
all_key_parts.extend(key.split(".")[2:])
index += 1
new_key = ".".join(all_key_parts)
if new_key in model.state_dict() and "fc" not in new_key:
new_state_dict[new_key] = item
# step 2: load from checkpoint
model.load_state_dict(new_state_dict, strict=False)
def load_from_state_dict_gen_img(model, state_dict):
"""Loads the model weights from the state dictionary."""
# step 1: filter state dict
model_keys_prefixes = []
for okey, oitem in model.state_dict().items():
model_keys_prefixes.append(okey.split(".")[0])
new_state_dict = {}
index = 0
for key, item in state_dict.items():
if (
key.startswith("imaging_model")
or key.startswith("model.imaging_model")
or key.startswith("models.0.imaging_model")
):
# remove the "model." prefix from the state dict key
all_key_parts = [model_keys_prefixes[index]]
if key.startswith("imaging_model"):
all_key_parts.extend(key.split(".")[2:])
elif key.startswith("model.imaging_model"):
all_key_parts.extend(key.split(".")[3:])
else:
all_key_parts.extend(key.split(".")[4:])
index += 1
new_key = ".".join(all_key_parts)
if new_key in model.state_dict():
new_state_dict[new_key] = item
# step 2: load from checkpoint
model.load_state_dict(new_state_dict, strict=False)
def load_from_state_dict_img_only(model, state_dict):
"""Loads the model weights from the state dictionary."""
# step 1: filter state dict
model_keys_prefixes = []
for okey, oitem in model.state_dict().items():
model_keys_prefixes.append(okey.split(".")[0])
new_state_dict = {}
index = 0
for key, item in state_dict.items():
if (
(
key.startswith("resnet_simclr")
or key.startswith("resnet_simsiam")
or key.startswith("resnet_barlow_twins")
or key.startswith("resnet_byol")
or key.startswith("resnet_nnclr")
)
and "projection" not in key
and "prediction" not in key
and "momentum" not in key
):
# remove the "model." prefix from the state dict key
all_key_parts = [model_keys_prefixes[index]]
all_key_parts.extend(key.split(".")[3:])
index += 1
new_key = ".".join(all_key_parts)
if new_key in model.state_dict():
new_state_dict[new_key] = item
# step 2: load from checkpoint
model.load_state_dict(new_state_dict, strict=False)
class Model(pl.LightningModule):
def __init__(
self,
n_output,
loss_fct,
base_model=models.resnet18,
pretrained=True,
lr=1e-3,
total_steps=0,
set_scheduler="none",
opt_method="adam",
opt_param=dict(),
metrics=[acc_RFMiD, auc_roc_score],
):
super().__init__()
self.lr = lr
self.total_steps = total_steps
self.loss_fct = loss_fct
self.set_scheduler = set_scheduler
if CHECKPOINT_PATH is None:
self.model = base_model(pretrained=pretrained)
else:
self.model = base_model(pretrained=pretrained)
state_dict = torch.load(CHECKPOINT_PATH, map_location=DEVICE)
if (
"simclr" in CHECKPOINT_PATH
or "byol" in CHECKPOINT_PATH
or "barlow" in CHECKPOINT_PATH
or "simsiam" in CHECKPOINT_PATH
or "nnclr" in CHECKPOINT_PATH
):
load_from_state_dict_img_only(self.model, state_dict["state_dict"])
elif "supervised" in CHECKPOINT_PATH:
if "state_dict" in state_dict:
load_from_state_dict_supervised(
self.model, state_dict["state_dict"]
)
else:
load_from_state_dict_supervised(self.model, state_dict)
else:
if "state_dict" in state_dict:
load_from_state_dict_gen_img(self.model, state_dict["state_dict"])
else:
load_from_state_dict_gen_img(self.model, state_dict)
if FROZEN_ENCODER and CHECKPOINT_PATH is not None:
for param in self.model.parameters():
param.requires_grad = False
self.model.fc = nn.Linear(self.model.fc.in_features, n_output)
self.opt_method = opt_method
self.opt_param = opt_param
self.metrics = metrics
def forward(self, x):
return self.model(x)
def configure_optimizers(self):
if self.opt_method == "adam":
optimizer = optim.Adam(self.parameters(), lr=self.lr, **self.opt_param)
elif self.opt_method == "sgd":
optimizer = optim.SGD(self.parameters(), lr=self.lr, **self.opt_param)
else:
raise NotImplementedError(
f"optimization method {self.opt_method} not set up"
)
if self.set_scheduler == "none":
return optimizer
elif self.set_scheduler == "steplr":
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.5)
elif self.set_scheduler == "onecycle":
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=self.lr,
total_steps=self.total_steps,
)
return [optimizer], [scheduler]
def training_step(self, batch, idx):
# print('current opt:', self.optimizers())
x, y = batch
y_hat = self(x)
loss = self.loss_fct(y_hat, y)
self.log("train_loss", loss, on_epoch=True)
return loss
def validation_step(self, batch, idx):
x, y = batch
y_hat = self(x)
loss = self.loss_fct(y_hat, y)
if self.metrics is not None:
for metric in self.metrics:
self.log(
f"valid_{metric.__name__}",
metric(y.to(torch.int), y_hat),
on_epoch=True,
prog_bar=True,
)
self.log("valid_loss", loss, on_epoch=True, prog_bar=True)
return loss
def test_step(self, batch, idx):
x, y = batch
y_hat = self(x)
loss = self.loss_fct(y_hat, y)
if self.metrics is not None:
for metric in self.metrics:
self.log(
f"test_{metric.__name__}",
metric(y.to(torch.int), y_hat),
on_epoch=True,
prog_bar=True,
)
self.log("test_loss", loss, on_epoch=True, prog_bar=True)
return loss
loaders = get_rfmid_loaders(**loader_param)
tl, vl, ttl = loaders
print(
"training samples "
+ str(len(tl))
+ " val samples "
+ str(len(vl))
+ " test samples "
+ str(len(ttl))
)
loss_fct = torch.nn.BCEWithLogitsLoss()
total_steps = epochs * len(tl) if use_scheduler else 0
model = (
Model(
n_classes,
loss_fct=loss_fct,
base_model=basemodel,
lr=lr,
total_steps=total_steps,
pretrained=pretrained_imagenet,
set_scheduler="onecycle" if use_scheduler else "none",
opt_method=optimizer,
opt_param=optimizer_dict,
)
.cuda()
.train()
)
logger = None
if WANDB:
logger = WandbLogger(project="RFMiD_retinal_disease_classification")
params = {
"epochs": epochs,
"lr": lr,
"use_scheduler": use_scheduler,
"base_model": basemodel.__name__,
"img_size": tl.dataset[0][0].shape[-1],
"bs": tl.batch_size,
"accumulate_grad_batches": accumulate_grad_batches,
}
logger.log_hyperparams(params)
trainer = pl.Trainer(
gpus=1,
deterministic=True,
max_epochs=epochs,
logger=logger if WANDB else True,
accumulate_grad_batches=accumulate_grad_batches,
callbacks=[
# EarlyStopping(monitor="valid_loss", patience=patience),
ModelCheckpoint(
monitor="valid_loss",
filename="model-{epoch:02d}-{valid_loss:.2f}",
save_top_k=1,
),
],
)
trainer.validate(model, dataloaders=vl)
trainer.fit(model, tl, vl)
result = trainer.test(dataloaders=ttl, ckpt_path="best")
print(result)