-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathempirical_test.py
302 lines (253 loc) · 12.6 KB
/
empirical_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Code modified based on https://github.com/AI-secure/semantic-randomized-smoothing
import os
import sys
import argparse
import torch
import torchvision
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
from torch.utils.data import DataLoader
from datasets import get_dataset, DATASETS, get_normalize_layer
from architectures import ARCHITECTURES, get_architecture
from datasets import get_dataset, DATASETS, get_num_classes, get_normalize_layer
from core import SemanticSmooth
from torch.optim import SGD, Optimizer
from torch.optim.lr_scheduler import StepLR
import time
import datetime
from tensorboardX import SummaryWriter
from train_utils import AverageMeter, accuracy, init_logfile, log
from transformers import gen_transformer, AbstractTransformer
from tqdm import trange
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('transtype', type=str, help='type of projective transformations',
choices=['resolvable_tz', 'resolvable_tx', 'resolvable_ty', 'resolvable_rz', 'resolvable_rx',
'resolvable_ry'])
parser.add_argument('outdir', type=str, help='folder to save model and training log)')
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--rotation_angle', help='constrain the rotation angle to +-rotation angle in degree',
type=float, default=180.0)
parser.add_argument('--noise_k', default=0.0, type=float,
help="standard deviation of brightness scaling")
parser.add_argument('--noise_b', default=0.0, type=float,
help="standard deviation of brightness shift")
parser.add_argument('--blur_lamb', default=0.0, type=float,
help="standard deviation of Exponential Gaussian blur, only useful when transtype is universal")
parser.add_argument('--sigma_trans', default=0.0, type=float,
help="standard deviation of translation, only useful when transtype is universal")
parser.add_argument('--sl', default=1.0, type=float,
help="resize minimum ratio")
parser.add_argument('--sr', default=1.0, type=float,
help="resize maximum ratio")
parser.add_argument('--gpu', default=None, type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--print_freq', default=1, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--pretrain', default=None, type=str)
##################### arguments for consistency training #####################
parser.add_argument('--num-noise-vec', default=1, type=int,
help="number of noise vectors. `m` in the paper.")
parser.add_argument('--lbd', default=20., type=float)
##################### arguments for tensorboard print #####################
parser.add_argument('--print_step', action="store_true")
parser.add_argument('--vanilla', action="store_true")
parser.add_argument('--uniform', action="store_true")
parser.add_argument('--beta', action="store_true")
parser.add_argument('--benign', action="store_true")
parser.add_argument('--proj_test', action="store_true")
parser.add_argument('--sample_num', default=100, type=int)
parser.add_argument('--base', action="store_true")
args = parser.parse_args()
def kl_div(input, targets, reduction='batchmean'):
return F.kl_div(F.log_softmax(input, dim=1), targets,
reduction=reduction)
def _cross_entropy(input, targets, reduction='mean'):
targets_prob = F.softmax(targets, dim=1)
xent = (-targets_prob * F.log_softmax(input, dim=1)).sum(1)
if reduction == 'sum':
return xent.sum()
elif reduction == 'mean':
return xent.mean()
elif reduction == 'none':
return xent
else:
raise NotImplementedError()
def _entropy(input, reduction='mean'):
return _cross_entropy(input, input, reduction)
def main():
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
if args.proj_test:
test_dataset = get_dataset(args.dataset, 'proj_test', args.transtype, args.vanilla, args.uniform, args.beta)
else:
# empirical test and certify
test_dataset = get_dataset(args.dataset, 'certify', args.transtype, args.vanilla, args.uniform, args.beta)
pin_memory = (args.dataset == "imagenet") or (args.dataset == "metaroom")
model = get_architecture(args.arch, args.dataset)
if args.pretrain is not None:
if args.pretrain == 'torchvision':
# load pretrain model from torchvision
if args.dataset == 'imagenet' or args.dataset == 'metaroom':# and args.arch == 'resnet50':
model = torchvision.models.resnet50(True).cuda()
# fix
normalize_layer = get_normalize_layer(args.dataset).cuda()
model = torch.nn.Sequential(normalize_layer, model)
print('loaded from torchvision for imagenet resnet50')
else:
raise Exception(f'Unsupported pretrain arg {args.pretrain}')
else:
# load the base classifier
checkpoint = torch.load(args.pretrain)
model.load_state_dict(checkpoint['state_dict'])
print(f'loaded from {args.pretrain}')
if args.noise_sd == 0.0:
logfilename = os.path.join(args.outdir, 'empirical_test_log.txt')
else:
logfilename = os.path.join(args.outdir, f'rand_empirical_{args.noise_sd}_test_log.txt')
# init_logfile(logfilename, "epoch\ttime\tlr\ttrain loss\ttrain acc\ttestloss\ttest acc")
writer = SummaryWriter(args.outdir)
transformer = gen_transformer(args, test_dataset[0][0])
criterion = CrossEntropyLoss().cuda()
before = time.time()
train_loss = -1.0
train_acc = -1.0
test_loss, test_acc = test(test_dataset, model, criterion, 0, transformer, writer, print_freq=args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
0, str(datetime.timedelta(seconds=(after - before))),
-1.0+0.01, train_loss+0.01, train_acc+0.01, test_loss+0.01, test_acc))
def _chunk_minibatch(batch, num_batches):
X, y = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size]
def test(dataset, model, criterion, epoch, transformer: AbstractTransformer, writer=True, print_freq=1):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to eval mode
model.eval()
if args.uniform:
type = "uniform"
elif args.beta:
type = "beta"
else:
type = "benign"
smoothed_classifier = SemanticSmooth(model, get_num_classes(args.dataset), transformer)
with torch.no_grad():
if args.base:
for i in range(len(dataset)):
(inputs_raw, targets_raw) = dataset[i]
# for i, (inputs, targets) in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
correct_100 = True
# print(i, targets)
inputs_raw = [inputs_raw]
targets = torch.tensor(targets_raw).unsqueeze(0).cuda()
# print(targets.shape, targets)
# print(inputs_raw)
assert len(inputs_raw) == 1
for _ in range(args.sample_num):
# augment inputs with noise
# print(transformer.process(inputs, empirical=True, type=type)[0].shape)
# compute output
inputs = transformer.process(inputs_raw, empirical=True, type=type)[0].unsqueeze(0).cuda()
inputs = torch.transpose(inputs, 2, 3)
inputs = torch.transpose(inputs, 1, 2).type(torch.cuda.FloatTensor)
outputs = model(inputs)
# loss = criterion(outputs, targets)
# measure accuracy and record loss
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
if acc1.item() != 100.0:
correct_100 = False
break
if args.benign:
break
if correct_100:
losses.update(0.0, inputs.size(0))
top1.update(100.0, inputs.size(0))
top5.update(0.0, inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
i, len(dataset), batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, top5=top5))
# correct_100 = True
else:
correct_100 = True
losses.update(0.0, inputs.size(0))
top1.update(0.0, inputs.size(0))
top5.update(0.0, inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
i, len(dataset), batch_time=batch_time, data_time=data_time,
loss=losses, top1=top1, top5=top5))
if writer:
writer.add_scalar('loss/test', losses.avg, epoch)
writer.add_scalar('accuracy/test@1', top1.avg, epoch)
writer.add_scalar('accuracy/test@5', top5.avg, epoch)
loss, top1 = losses.avg, top1.avg
else:
tot, tot_good = 0, 0
for i in range(len(dataset)):
(inputs_raw, targets_raw) = dataset[i]
correct_100 = True
# inputs_raw = [inputs_raw]
for _ in trange(args.sample_num):
inputs = transformer.projection_adder.pertubate(inputs_raw, empirical=True, type=type)
outputs = smoothed_classifier.predict(inputs, 100, 0.01, 100)
clean_correct = (outputs == targets_raw)
if not clean_correct:
correct_100 = False
break
if args.benign:
break
if correct_100:
tot, tot_good = tot + 1, tot_good + 1
else:
tot, tot_good = tot + 1, tot_good
print(f'{i} RACC = {tot_good}/{tot} = {float(tot_good) / float(tot)}')
loss, top1 = 0, float(tot_good) / float(tot)
return (loss, top1)
if __name__ == "__main__":
main()