-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
62 lines (50 loc) · 2.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import time
from options.train_options import TrainOptions
from data.data_loader import DataLoader
from models.DIFL_model import DIFLModel
from util.visualizer import Visualizer
class Trainer():
def __init__(self):
self.opt = TrainOptions().parse()
self.dataset = DataLoader(self.opt)
print('# training images = %d' % len(self.dataset))
self.model = DIFLModel(self.opt)
self.visualizer = Visualizer(self.opt)
self.total_steps = 0
def train(self):
"""
Main loop for DIFL training.
Training options are set through train_options and base_options.
:return: None
"""
# Update hyperparameters if continuing training
if self.opt.which_epoch > 0:
self.model.update_hyperparams(self.opt.which_epoch)
for epoch in range(self.opt.which_epoch + 1, self.opt.niter + self.opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(self.dataset):
iter_start_time = time.time()
self.total_steps += self.opt.batchSize
epoch_iter += self.opt.batchSize
self.model.set_input(data)
self.model.optimize_parameters()
if self.total_steps % self.opt.display_freq == 0:
self.visualizer.display_current_results(self.model.get_current_visuals(), epoch)
if self.total_steps % self.opt.print_freq == 0:
errors = self.model.get_current_errors()
t = (time.time() - iter_start_time) / self.opt.batchSize
self.visualizer.print_current_errors(epoch, epoch_iter, errors, t)
# display on the visdom
if self.opt.display_id > 0:
self.visualizer.plot_current_errors(epoch, float(epoch_iter)/len(self.dataset), self.opt, errors)
if epoch % self.opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, self.total_steps))
self.model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, self.opt.niter + self.opt.niter_decay, time.time() - epoch_start_time))
# update hyperparameters every epoch
self.model.update_hyperparams(epoch)
if __name__ == "__main__":
trainer = Trainer()
trainer.train()