-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
114 lines (95 loc) · 3.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import os
import time
import random
import numpy as np
import argparse
import timm
import monai
import segmentation_models_pytorch as smp
from trainer.cnn_learner import EncoderTrainer
from trainer.unet_learner import UNetTrainer
from model.model import EfficientNetB0, UNetEfficientNet
def random_seed(seed_value, use_cuda):
np.random.seed(seed_value)
torch.manual_seed(seed_value)
random.seed(seed_value)
if use_cuda:
torch.cuda.manual_seed(seed_value)
torch.cuda.manual_seed_all(seed_value) # gpu vars\n
torch.backends.cudnn.deterministic = True # needed\n
torch.backends.cudnn.benchmark = False
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ["yes", "true", "t", "y", "1"]:
return True
elif v.lower() in ["no", "false", "f", "n", "0"]:
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
def parse_args():
parser = argparse.ArgumentParser(
description="Train Model Organ Specific for Probability Map"
)
parser.add_argument("--root_dir", type=str, help="Patch(Random Extract) Directory")
parser.add_argument("--model_dir", type=str, help="save model directory")
parser.add_argument(
"--train_mode", type=str, help="clf: classification, seg: segmentation"
)
parser.add_argument(
"--train_type", type=str, help="encoder, [for probmap]: col, pan, pros"
)
parser.add_argument("--lr", type=float, default=1e-3)
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--train_epochs", type=int, default=100)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--level", type=int, help="level 0 : 20X, level 1 : 5X")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--patience", type=int, default=3, help="Early Stop patience")
parser.add_argument("--random_sampling", type=str2bool, default=True)
return parser.parse_args()
def main():
args = parse_args()
random_seed(args.seed, True)
if args.use_gpu:
device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
else:
device = torch.device("cpu")
if args.train_mode == "clf":
# model = EfficientNetB0(pre_trained = True, num_classes = 4)
model = timm.create_model(
"tf_efficientnet_b0_ns", pretrained=True, num_classes=4
)
criterion = torch.nn.CrossEntropyLoss()
elif args.train_mode == "seg":
encoder_path = os.path.join(
args.model_dir, "clf/all", f"level_{args.level}/checkpoint.pt"
)
model = smp.Unet(
encoder_name="timm-efficientnet-b0",
encoder_weights="noisy-student",
in_channels=3,
classes=2,
)
model.encoder.load_state_dict(torch.load(encoder_path))
for param in model.encoder.parameters():
param.requires_grad = False
criterion = monai.losses.DiceLoss(
softmax=True, to_onehot_y=True, include_background=True
)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
if args.train_mode == "clf":
trainer = EncoderTrainer(args, model, optimizer, criterion, device)
elif args.train_mode == "seg":
trainer = UNetTrainer(args, model, optimizer, criterion, device)
trainer.training()
if __name__ == "__main__":
main()