-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathkitti_finetune.py
262 lines (215 loc) · 9.76 KB
/
kitti_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from __future__ import print_function
import argparse
import os,sys
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
from torch.autograd import Variable
import torch.nn.functional as F
import skimage
import skimage.io
import skimage.transform
import numpy as np
import time
import math
from utils.common import load_loss_scheme
from dataloader import KITTILoader as DA
from networks.FADNet import FADNet
from networks.stackhourglass import PSMNet
from losses.multiscaleloss import multiscaleloss
parser = argparse.ArgumentParser(description='FADNet')
parser.add_argument('--maxdisp', type=int ,default=192,
help='maxium disparity')
parser.add_argument('--model', default='fadnet',
help='select model')
parser.add_argument('--datatype', default='2015',
help='datapath')
parser.add_argument('--datapath', default='/media/jiaren/ImageNet/data_scene_flow_2015/training/',
help='datapath')
parser.add_argument('--epochs', type=int, default=300,
help='number of epochs to train')
parser.add_argument('--loadmodel', default=None,
help='load model')
parser.add_argument('--savemodel', default='./',
help='save model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--devices', type=str, help='indicates CUDA devices, e.g. 0,1,2', default='0')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--loss', type=str, help='indicates the loss scheme', default='simplenet_flying')
args = parser.parse_args()
if not os.path.exists(args.savemodel):
os.makedirs(args.savemodel)
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.datatype == '2015':
from dataloader import KITTIloader2015 as ls
elif args.datatype == '2012':
from dataloader import KITTIloader2012 as ls
all_left_img, all_right_img, all_left_disp, test_left_img, test_right_img, test_left_disp = ls.dataloader(args.datapath)
TrainImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(all_left_img,all_right_img,all_left_disp, True),
batch_size= 8, shuffle= True, num_workers= 8, drop_last=False)
TestImgLoader = torch.utils.data.DataLoader(
DA.myImageFloder(test_left_img,test_right_img,test_left_disp, False),
batch_size= 8, shuffle= False, num_workers= 4, drop_last=False)
devices = [int(item) for item in args.devices.split(',')]
ngpus = len(devices)
if args.model == 'fadnet':
model = FADNet(False, True)
elif args.model == 'psmnet':
model = PSMNet(maxdisp=args.maxdisp)
else:
print('no model')
sys.exit(-1)
if args.cuda:
model = nn.DataParallel(model, device_ids=devices)
model.cuda()
if args.loadmodel is not None:
state_dict = torch.load(args.loadmodel)
model.load_state_dict(state_dict['state_dict'])
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
init_lr = 0.01
optimizer = optim.Adam(model.parameters(), lr=init_lr, betas=(0.9, 0.999))
loss_json = load_loss_scheme(args.loss)
train_round = loss_json["round"]
loss_scale = loss_json["loss_scale"]
loss_weights = loss_json["loss_weights"]
epoches = loss_json["epoches"]
def train(imgL,imgR,disp_L, criterion):
model.train()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
disp_L = Variable(torch.FloatTensor(disp_L))
if args.cuda:
imgL, imgR, disp_true = imgL.cuda(), imgR.cuda(), disp_L.cuda()
#---------
mask = (disp_true > 0)
mask.detach_()
#----
optimizer.zero_grad()
if args.model == 'psmnet':
output1, output2, output3 = model(torch.cat((imgL, imgR), 1))
output1 = torch.squeeze(output1,1)
output2 = torch.squeeze(output2,1)
output3 = torch.squeeze(output3,1)
loss = 0.5*F.smooth_l1_loss(output1[mask], disp_true[mask], size_average=True) + 0.7*F.smooth_l1_loss(output2[mask], disp_true[mask], size_average=True) + F.smooth_l1_loss(output3[mask], disp_true[mask], size_average=True)
elif args.model == 'fadnet':
output_net1, output_net2 = model(torch.cat((imgL, imgR), 1))
# multi-scale loss
disp_true = disp_true.unsqueeze(1)
loss_net1 = criterion(output_net1, disp_true)
loss_net2 = criterion(output_net2, disp_true)
loss = loss_net1 + loss_net2
# only the last scale
#output1 = output_net1[0].squeeze(1)
#output2 = output_net2[0].squeeze(1)
#loss = 0.5*F.smooth_l1_loss(output1[mask], disp_true[mask], size_average=True) + F.smooth_l1_loss(output2[mask], disp_true[mask], size_average=True)
loss.backward()
optimizer.step()
return loss.data.item()
def test(imgL,imgR,disp_true):
model.eval()
imgL = Variable(torch.FloatTensor(imgL))
imgR = Variable(torch.FloatTensor(imgR))
if args.cuda:
imgL, imgR = imgL.cuda(), imgR.cuda()
#print(imgL.size())
#imgL = F.pad(imgL, (0, 48, 0, 16), "constant", 0)
#imgR = F.pad(imgR, (0, 48, 0, 16), "constant", 0)
#print(imgL.size())
with torch.no_grad():
if args.model == "psmnet":
output_net = model(torch.cat((imgL, imgR), 1))
pred_disp = output_net.squeeze(1)
elif args.model == "fadnet":
output_net1, output_net2 = model(torch.cat((imgL, imgR), 1))
pred_disp = output_net2.squeeze(1)
pred_disp = pred_disp.data.cpu()
#pred_disp = pred_disp[:, :368, :1232]
#computing 3-px error#
true_disp = disp_true.clone()
index = np.argwhere(true_disp>0)
disp_true[index[0][:], index[1][:], index[2][:]] = np.abs(true_disp[index[0][:], index[1][:], index[2][:]]-pred_disp[index[0][:], index[1][:], index[2][:]])
correct = (disp_true[index[0][:], index[1][:], index[2][:]] < 3)|(disp_true[index[0][:], index[1][:], index[2][:]] < true_disp[index[0][:], index[1][:], index[2][:]]*0.05)
torch.cuda.empty_cache()
return 1-(float(torch.sum(correct))/float(len(index[0])))
def adjust_learning_rate(optimizer, epoch):
if epoch <= 600:
lr = init_lr
else:
lr = init_lr / 10.0
print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main():
min_acc=1000
min_epo=0
min_round=0
start_full_time = time.time()
# test on the loaded model
total_test_loss = 0
for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader):
test_loss = test(imgL,imgR, disp_L)
print('Iter %d 3-px error in val = %.3f' %(batch_idx, test_loss*100))
total_test_loss += test_loss
min_acc=total_test_loss/len(TestImgLoader)*100
print('MIN epoch %d of round %d total test error = %.3f' %(min_epo, min_round, min_acc))
start_round = 0
for r in range(start_round, train_round):
criterion = multiscaleloss(loss_scale, 1, loss_weights[r], loss='L1', mask=True)
print(loss_weights[r])
for epoch in range(1, epoches[r]+1):
total_train_loss = 0
total_test_loss = 0
adjust_learning_rate(optimizer,epoch)
## training ##
for batch_idx, (imgL_crop, imgR_crop, disp_crop_L) in enumerate(TrainImgLoader):
start_time = time.time()
loss = train(imgL_crop,imgR_crop, disp_crop_L, criterion)
print('Iter %d training loss = %.3f , time = %.2f' %(batch_idx, loss, time.time() - start_time))
total_train_loss += loss
print('epoch %d of round %d total training loss = %.3f' %(epoch, r, total_train_loss/len(TrainImgLoader)))
## Test ##
for batch_idx, (imgL, imgR, disp_L) in enumerate(TestImgLoader):
test_loss = test(imgL,imgR, disp_L)
print('Iter %d 3-px error in val = %.3f' %(batch_idx, test_loss*100))
total_test_loss += test_loss
print('epoch %d of round %d total 3-px error in val = %.3f' %(epoch, r, total_test_loss/len(TestImgLoader)*100))
if total_test_loss/len(TestImgLoader)*100 < min_acc:
min_acc = total_test_loss/len(TestImgLoader)*100
min_epo = epoch
min_round = r
savefilename = args.savemodel+'best.tar'
torch.save({
'epoch': epoch,
'round': r,
'state_dict': model.state_dict(),
'train_loss': total_train_loss/len(TrainImgLoader),
'test_loss': total_test_loss/len(TestImgLoader)*100,
}, savefilename)
print('MIN epoch %d of round %d total test error = %.3f' %(min_epo, min_round, min_acc))
#SAVE
if (epoch - 1) % 100 == 0:
savefilename = args.savemodel+'finetune_%s_%s' % (str(r), str(epoch))+'.tar'
torch.save({
'epoch': epoch,
'round': r,
'state_dict': model.state_dict(),
'train_loss': total_train_loss/len(TrainImgLoader),
'test_loss': total_test_loss/len(TestImgLoader)*100,
}, savefilename)
print('full finetune time = %.2f HR' %((time.time() - start_full_time)/3600))
print(min_epo)
print(min_round)
print(min_acc)
if __name__ == '__main__':
main()