-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
44 lines (35 loc) · 1.45 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch.nn as nn
from models import models
def freezeResNet(model):
for name, p in model.named_parameters():
if 'fc' not in name:
p.required_grad = False
return model #이거 필요한가?
def freezeDenseNet(model):
for name, p in model.named_parameters():
if 'classifier' not in name:
p.required_grad = False
return model
def freezeVGG(model):
for name, p in model.named_parameters():
if 'classifier.6' not in name:
p.required_grad = False
return model
def fineTuningModel(name, num_classes, is_freeze, pretrained = True): #freeze #true true시 r
model = models(name, pretrained)
if 'resnet' in name:
input_features = model.fc.in_features
model.fc = nn.Linear(in_features = input_features, out_features = num_classes, bias=True)
if is_freeze and pretrained :
model = freezeResNet(model)
elif 'vgg' in name:
input_features = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(in_features = input_features, out_features = num_classes, bias=True)
if is_freeze and pretrained:
model = freezeVGG(model)
elif 'densenet' in name:
input_features = model.classifier.in_features
model.classifier = nn.Linear(in_features = input_features, out_features = num_classes, bias=True)
if is_freeze and pretrained:
model = freezeDenseNet(model)
return model