-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
47 lines (41 loc) · 1.79 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
class Test:
def __init__(self, trained_model, test_loader, num_data):
self.trained_model = trained_model
self.test_loader = test_loader
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.num_data = num_data
def OverallAccuracy(self):
self.trained_model.eval()
correct = 0
total = 0
with torch.no_grad():
for data in self.test_loader:
images, labels = data
images = images.to(self.device)
labels = labels.to(self.device)
outputs = self.trained_model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the %d test images: %d %%' % (self.num_data,
100 * correct / total))
def ClassAccuracy(self, classes):
self.trained_model.eval()
class_correct = list(0. for i in range(len(classes)))
class_total = list(0. for i in range(len(classes)))
with torch.no_grad():
for data in self.test_loader:
images, labels = data
images = images.to(self.device)
labels = labels.to(self.device)
outputs = self.trained_model(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels)
for i in range(len(c)): #batch size
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(len(classes)):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))