-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinference.py
212 lines (149 loc) · 5.96 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import argparse
import os.path
import sys
import yaml
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from core.dataset.semantic_kitti import SemanticKITTIInternal
from core.models.rpvnet import RPVnet
from core.evaluator import MeanIoU
batch_size = None
device = None
def main(args):
assert os.path.exists(args.dataset),(f'The dataset dir [{args.dataset}] doesn\'t exist.')
assert os.path.exists(args.model_cfg),(f'The model config [{args.model_cfg}] doesn\'t exist.')
assert os.path.exists(args.data_cfg),(f'The dataset config [{args.data_cfg}] doesn\'t exist.')
print('-----------------')
print(f'dataset dir: {args.dataset}')
print(f'model config: {args.model_cfg}')
print(f'dataset config: {args.data_cfg}')
print(f'checkpoint: {args.checkpoint}')
print('-----------------')
# load dataset config
try:
data_cfg = yaml.safe_load(open(args.data_cfg,'r'))
except Exception as e:
print(e)
print("Error opening data yaml file.")
quit()
# load model config
try:
model_cfg = yaml.safe_load(open(args.model_cfg,'r'))
except Exception as e:
print(e)
print("Error opening model yaml file.")
quit()
# check if use pretrained model
if args.checkpoint is not None:
if os.path.isfile(args.checkpoint) and args.checkpoint.endswith('.ckpt'):
print(f'Using the pretrained model:[{args.checkpoint}]')
else:
print(f'The pretrained model:[{args.checkpoint}] doesn\'t exist.')
model = RPVnet(
vsize=model_cfg['voxel_size'],
cr=model_cfg['cr'],
cs=model_cfg['dimension_of_stages'],
num_classes=model_cfg['num_classes']
)
data = SemanticKITTIInternal(
root=args.dataset,
voxel_size=data_cfg['voxel_size'],
range_size=data_cfg['range_size'],
sample_stride=data_cfg['sample_stride'],
split=data_cfg['split']['test'],
max_voxels=data_cfg['max_voxels'],
label_name_mapping=data_cfg['label_name_mapping'],
kept_labels=data_cfg['kept_labels']
)
if args.checkpoint is not None:
state = torch.load(args.checkpoint, map_location=args.device)
print(state['info'])
args.epochs = state['info']['epochs']
model.load_state_dict(state['state_dict'])
criterion = getattr(nn,model_cfg['train']['loss'])(ignore_index=model_cfg['train']['ignore_index'])
evaluator = MeanIoU(num_classes=model_cfg['num_classes'],rank=-100,ignore_label=model_cfg['train']['ignore_index'])
batch_size = model_cfg['train']['batch_size']
device = args.device
# num of worker
nw = min([os.cpu_count(), model_cfg['train']['batch_size'], 8])
if args.device == 'cpu':
dataloader = DataLoader(data,
batch_size= batch_size,
num_workers=nw,
collate_fn=data.collate_fn,
shuffle=True)
elif torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.fastest = True
# 单卡
if torch.cuda.device_count() == 1:
dataloader = DataLoader(data,
batch_size=batch_size,
num_workers=nw,
collate_fn=data.collate_fn,
shuffle=True)
model.to(device)
for epoch in range(args.epochs):
loss, (iou, miou, acc) = test_each_epoch(epoch,dataloader,model,evaluator,criterion)
print(f'Epoch:[{epoch + 1:>3d}/{args.epochs:>3d}]'
f' Mean Loss:{loss} mIoU:{miou} Accuary:{acc}')
def test_each_epoch(epoch,dataloader,model,evaluator,criterion):
dataloader = tqdm(dataloader, file=sys.stdout)
torch.cuda.empty_cache()
model.eval()
evaluator.reset()
mean_loss = torch.zeros(1).to(device)
for batch, data in enumerate(dataloader):
lidar, label, image = data['lidar'], data['label'], data['image']
py, px = data['py'], data['px']
if device == 'cuda':
lidar, label, image = lidar.cuda(), label.cuda(), image.cuda()
px = [x.cuda() for x in px]
py = [y.cuda() for y in py]
outputs = model(lidar, image, py, px)
loss = criterion(outputs, label.F.long())
loss.backward()
mean_loss = (mean_loss * batch + loss.detach()) / (batch + 1)
iou, miou, acc = evaluator(outputs.argmax(dim=1), label.F.long())
assert torch.isfinite(loss), f'ERROR: non-finite loss, ending training! {loss}'
print(f'Batch:[{batch + 1:>3d}/{batch_size}]'
f' Mean Loss:{mean_loss} mIoU:{miou} Accuary:{acc}')
return mean_loss, evaluator.epoch_miou()
if __name__=='__main__':
root,_ = os.path.split(os.path.abspath(__file__))
parser = argparse.ArgumentParser('Trainning Model.')
parser.add_argument(
'--dataset','-d',
type=str,required=True,
help='the root dir of datasets'
)
parser.add_argument(
'--checkpoint','-ckpt',
type=str,
default=None,
help='the path for loading checkpoint'
)
parser.add_argument(
'--model_cfg','-m',
type=str,
default=root + '/config/model.yaml',
help='the config of model'
)
parser.add_argument(
'--data_cfg','-dc',
type=str,
default=root + '/config/semantic-kitti.yaml',
help='the config of model'
)
parser.add_argument(
'--device',
default='cpu',
help='device id (i.e. 0 or 0,1 or cuda)'
)
args,unparsed = parser.parse_known_args()
main(args)