-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
175 lines (145 loc) · 4.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
from utils.config_utils import read_args, load_config, Dict2Object
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, device, train_loader, optimizer, epoch):
"""
tain the model and return the training accuracy
:param args: input arguments
:param model: neural network model
:param device: the device where model stored
:param train_loader: data loader
:param optimizer: optimizer
:param epoch: current epoch
:return:
"""
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
'''Fill your code'''
training_acc, training_loss = None, None # replace this line
return training_acc, training_loss
def test(model, device, test_loader):
"""
test the model and return the tesing accuracy
:param model: neural network model
:param device: the device where model stored
:param test_loader: data loader
:return:
"""
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
'''Fill your code'''
pass
testing_acc, testing_loss = None, None # replace this line
return testing_acc, testing_loss
def plot(epoches, performance):
"""
plot the model peformance
:param epoches: recorded epoches
:param performance: recorded performance
:return:
"""
"""Fill your code"""
pass
def run(config):
use_cuda = not config.no_cuda and torch.cuda.is_available()
use_mps = not config.no_mps and torch.backends.mps.is_available()
torch.manual_seed(config.seed)
if use_cuda:
device = torch.device("cuda")
elif use_mps:
device = torch.device("mps")
else:
device = torch.device("cpu")
train_kwargs = {'batch_size': config.batch_size, 'shuffle': True}
test_kwargs = {'batch_size': config.test_batch_size, 'shuffle': True}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
# download data
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('./data', train=True, download=True, transform=transform)
dataset2 = datasets.MNIST('./data', train=False, transform=transform)
"""add random seed to the DataLoader, pls modify this function"""
train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=config.lr)
"""record the performance"""
epoches = []
training_accuracies = []
training_loss = []
testing_accuracies = []
testing_loss = []
scheduler = StepLR(optimizer, step_size=1, gamma=config.gamma)
for epoch in range(1, config.epochs + 1):
train_acc, train_loss = train(config, model, device, train_loader, optimizer, epoch)
"""record training info, Fill your code"""
test_acc, test_loss = test(model, device, test_loader)
"""record testing info, Fill your code"""
scheduler.step()
"""update the records, Fill your code"""
"""plotting training performance with the records"""
plot(epoches, training_loss)
"""plotting testing performance with the records"""
plot(epoches, testing_accuracies)
plot(epoches, testing_loss)
if config.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
def plot_mean():
"""
Read the recorded results.
Plot the mean results after three runs.
:return:
"""
"""fill your code"""
if __name__ == '__main__':
arg = read_args()
"""toad training settings"""
config = load_config(arg)
"""train model and record results"""
run(config)
"""plot the mean results"""
plot_mean()