|
| 1 | +// Copyright 2023 Greptime Team |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +use std::hint::black_box; |
| 16 | +use std::sync::Arc; |
| 17 | + |
| 18 | +use criterion::{BenchmarkId, Criterion, criterion_group, criterion_main}; |
| 19 | +use datafusion::arrow::array::{Int32Array, TimestampMillisecondArray}; |
| 20 | +use datafusion::arrow::datatypes::{DataType, Field, TimeUnit}; |
| 21 | +use datafusion_common::arrow::array::{ArrayRef, RecordBatch, StringArray}; |
| 22 | +use datafusion_common::arrow::datatypes::Schema; |
| 23 | +use datafusion_common::{ScalarValue, utils}; |
| 24 | +use datatypes::arrow::array::AsArray; |
| 25 | +use datatypes::arrow::datatypes::{ |
| 26 | + Int32Type, TimestampMicrosecondType, TimestampMillisecondType, TimestampNanosecondType, |
| 27 | + TimestampSecondType, |
| 28 | +}; |
| 29 | +use datatypes::schema::SchemaRef; |
| 30 | + |
| 31 | +fn prepare_record_batch(rows: usize) -> RecordBatch { |
| 32 | + let schema = Schema::new(vec![ |
| 33 | + Field::new( |
| 34 | + "ts", |
| 35 | + DataType::Timestamp(TimeUnit::Millisecond, None), |
| 36 | + false, |
| 37 | + ), |
| 38 | + Field::new("i", DataType::Int32, true), |
| 39 | + Field::new("s", DataType::Utf8, true), |
| 40 | + ]); |
| 41 | + |
| 42 | + let columns: Vec<ArrayRef> = vec![ |
| 43 | + Arc::new(TimestampMillisecondArray::from_iter_values( |
| 44 | + (0..rows).map(|x| (1760313600000 + x) as i64), |
| 45 | + )), |
| 46 | + Arc::new(Int32Array::from_iter_values((0..rows).map(|x| x as i32))), |
| 47 | + Arc::new(StringArray::from_iter((0..rows).map(|x| { |
| 48 | + if x % 2 == 0 { |
| 49 | + Some(format!("s_{x}")) |
| 50 | + } else { |
| 51 | + None |
| 52 | + } |
| 53 | + }))), |
| 54 | + ]; |
| 55 | + |
| 56 | + RecordBatch::try_new(Arc::new(schema), columns).unwrap() |
| 57 | +} |
| 58 | + |
| 59 | +fn iter_by_greptimedb_values(schema: SchemaRef, record_batch: RecordBatch) { |
| 60 | + let record_batch = |
| 61 | + common_recordbatch::RecordBatch::try_from_df_record_batch(schema, record_batch).unwrap(); |
| 62 | + for row in record_batch.rows() { |
| 63 | + black_box(row); |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +fn iter_by_loop_rows_and_columns(record_batch: RecordBatch) { |
| 68 | + for i in 0..record_batch.num_rows() { |
| 69 | + for column in record_batch.columns() { |
| 70 | + match column.data_type() { |
| 71 | + DataType::Timestamp(time_unit, _) => { |
| 72 | + let v = match time_unit { |
| 73 | + TimeUnit::Second => { |
| 74 | + let array = column.as_primitive::<TimestampSecondType>(); |
| 75 | + array.value(i) |
| 76 | + } |
| 77 | + TimeUnit::Millisecond => { |
| 78 | + let array = column.as_primitive::<TimestampMillisecondType>(); |
| 79 | + array.value(i) |
| 80 | + } |
| 81 | + TimeUnit::Microsecond => { |
| 82 | + let array = column.as_primitive::<TimestampMicrosecondType>(); |
| 83 | + array.value(i) |
| 84 | + } |
| 85 | + TimeUnit::Nanosecond => { |
| 86 | + let array = column.as_primitive::<TimestampNanosecondType>(); |
| 87 | + array.value(i) |
| 88 | + } |
| 89 | + }; |
| 90 | + black_box(v); |
| 91 | + } |
| 92 | + DataType::Int32 => { |
| 93 | + let array = column.as_primitive::<Int32Type>(); |
| 94 | + let v = array.value(i); |
| 95 | + black_box(v); |
| 96 | + } |
| 97 | + DataType::Utf8 => { |
| 98 | + let array = column.as_string::<i32>(); |
| 99 | + let v = array.value(i); |
| 100 | + black_box(v); |
| 101 | + } |
| 102 | + _ => unreachable!(), |
| 103 | + } |
| 104 | + } |
| 105 | + } |
| 106 | +} |
| 107 | + |
| 108 | +fn iter_by_datafusion_scalar_values(record_batch: RecordBatch) { |
| 109 | + let columns = record_batch.columns(); |
| 110 | + for i in 0..record_batch.num_rows() { |
| 111 | + let row = utils::get_row_at_idx(columns, i).unwrap(); |
| 112 | + black_box(row); |
| 113 | + } |
| 114 | +} |
| 115 | + |
| 116 | +fn iter_by_datafusion_scalar_values_with_buf(record_batch: RecordBatch) { |
| 117 | + let columns = record_batch.columns(); |
| 118 | + let mut buf = vec![ScalarValue::Null; columns.len()]; |
| 119 | + for i in 0..record_batch.num_rows() { |
| 120 | + utils::extract_row_at_idx_to_buf(columns, i, &mut buf).unwrap(); |
| 121 | + } |
| 122 | +} |
| 123 | + |
| 124 | +pub fn criterion_benchmark(c: &mut Criterion) { |
| 125 | + let mut group = c.benchmark_group("iter_record_batch"); |
| 126 | + |
| 127 | + for rows in [1usize, 10, 100, 1_000, 10_000] { |
| 128 | + group.bench_with_input( |
| 129 | + BenchmarkId::new("by_greptimedb_values", rows), |
| 130 | + &rows, |
| 131 | + |b, rows| { |
| 132 | + let record_batch = prepare_record_batch(*rows); |
| 133 | + let schema = |
| 134 | + Arc::new(datatypes::schema::Schema::try_from(record_batch.schema()).unwrap()); |
| 135 | + b.iter(|| { |
| 136 | + iter_by_greptimedb_values(schema.clone(), record_batch.clone()); |
| 137 | + }) |
| 138 | + }, |
| 139 | + ); |
| 140 | + |
| 141 | + group.bench_with_input( |
| 142 | + BenchmarkId::new("by_loop_rows_and_columns", rows), |
| 143 | + &rows, |
| 144 | + |b, rows| { |
| 145 | + let record_batch = prepare_record_batch(*rows); |
| 146 | + b.iter(|| { |
| 147 | + iter_by_loop_rows_and_columns(record_batch.clone()); |
| 148 | + }) |
| 149 | + }, |
| 150 | + ); |
| 151 | + |
| 152 | + group.bench_with_input( |
| 153 | + BenchmarkId::new("by_datafusion_scalar_values", rows), |
| 154 | + &rows, |
| 155 | + |b, rows| { |
| 156 | + let record_batch = prepare_record_batch(*rows); |
| 157 | + b.iter(|| { |
| 158 | + iter_by_datafusion_scalar_values(record_batch.clone()); |
| 159 | + }) |
| 160 | + }, |
| 161 | + ); |
| 162 | + |
| 163 | + group.bench_with_input( |
| 164 | + BenchmarkId::new("by_datafusion_scalar_values_with_buf", rows), |
| 165 | + &rows, |
| 166 | + |b, rows| { |
| 167 | + let record_batch = prepare_record_batch(*rows); |
| 168 | + b.iter(|| { |
| 169 | + iter_by_datafusion_scalar_values_with_buf(record_batch.clone()); |
| 170 | + }) |
| 171 | + }, |
| 172 | + ); |
| 173 | + } |
| 174 | + |
| 175 | + group.finish(); |
| 176 | +} |
| 177 | + |
| 178 | +criterion_group!(benches, criterion_benchmark); |
| 179 | +criterion_main!(benches); |
0 commit comments