-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathOne_hot_encode.py
47 lines (31 loc) · 1.18 KB
/
One_hot_encode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# One hot encode all label training array.
from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(new_y)
print()
# binary encode
onehot_encoder = OneHotEncoder(sparse_output=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
# One hot encode all valid array.
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(new_y_valid)
print()
# binary encode
onehot_encoder = OneHotEncoder(sparse_output=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encodedvalid = onehot_encoder.fit_transform(integer_encoded)
# One hot encode all test array.
# integer encode
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(new_y_test)
print()
# binary encode
onehot_encoder = OneHotEncoder(sparse_output=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encodedtest = onehot_encoder.fit_transform(integer_encoded)