-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathF1 metrics.py
27 lines (20 loc) · 1.1 KB
/
F1 metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from keras import backend as K
def recall_m(y_true, y_pred): # 'Recall
true_positives = K.sum(K.round(K.clip(y_true*y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision_m(y_true, y_pred): # Precision
true_positives = K.sum(K.round(K.clip(y_true*y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
def f1_m(y_true, y_pred): # F1 score
precision = precision_m(y_true, y_pred)
recall = recall_m(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
############### Predict and Run results #####################
predicted_label = Watteffnet36.predict(np.asarray(new_X_test))
print(recall_m(onehot_encodedtest.astype('float32'),predicted_label.astype('float32')))
print(precision_m(onehot_encodedtest.astype('float32'),predicted_label.astype('float32')))
print(f1_m(onehot_encodedtest.astype('float32'),predicted_label.astype('float32')))