-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
37 lines (28 loc) · 1.48 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import default_collate
from torchvision.transforms import v2
#################### Cutmix or MixUp data augmentation ################################
cutmix = v2.CutMix(num_classes=100)
mixup = v2.MixUp(num_classes=100)
cutmix_or_mixup = v2.RandomChoice([cutmix, mixup])
def collate_fn(batch):
return cutmix_or_mixup(*default_collate(batch))
########################### miniImageNet dataloader ###################################
class miniImageNet_CustomDataset(Dataset):
def __init__(self, images, labels, transform=None):
self.images = images
self.labels = labels
self.transform = data_transform
def __getitem__(self, idx):
label = self.labels[idx]
image = self.images[idx]
image = self.transform(np.array(image))
return image, label
def __len__(self):
return len(self.labels)
#################################### Dataloader ##############################
train_dataset = miniImageNet_CustomDataset(new_X_train,new_y_train, transform=[data_transform, Augment]) # Combined data transform. Augment is from Data_Augmentation.py
val_dataset = miniImageNet_CustomDataset(new_X_val,new_y_val, transform=[data_transform_valtest])
train_dataloader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=collate_fn) # Collate_fn called on here.
val_dataloader = DataLoader(val_dataset, batch_size=16, shuffle=True)