-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathData_Preparation.py
164 lines (130 loc) · 4.9 KB
/
Data_Preparation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Import relevant libraries
import scipy
from scipy import spatial
from scipy.spatial.distance import cdist
import numpy as np
from tqdm import tqdm
from math import floor
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch as F
from torch.utils.data import Dataset
from torch import optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.models import resnet18
from torch.utils.data import DataLoader
import torch as T
from torch import nn, optim
from tqdm import tqdm
import matplotlib.pyplot as plt
import re
import os
import cv2
import PIL
import numpy as np
import torchvision
import glob
from random import shuffle
from PIL import Image
from os import listdir
from numpy import asarray
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.preprocessing.image import load_img
from imblearn.under_sampling import RandomUnderSampler
import random
from tensorflow.keras.losses import MSE
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import BatchNormalization
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.layers import Activation
from tensorflow.keras.layers import Flatten
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Dense
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import to_categorical
from numpy import array
from numpy import argmax
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
############ We use the easyfsl library mainly for the work ###############
!pip install easyfsl # Install easyfsl.
from easyfsl.samplers import TaskSampler
from easyfsl.utils import plot_images, sliding_average
###############################################################################################
# DATA PREPARATION PART.
# We use miniImageNet as an example as the subsequent codes for the
# respective outputs can be illustrated in a smooth manner. The same steps goes for the other datasets.
def natural_sort_key(s, _nsre=re.compile('([0-9]+)')):
return[int(text) if text.isdigit() else text.lower() for text in _nsre.split(s )]
path = 'path to miniImageNet here'
files_list_miniImageNet = []
for filename in sorted(os.listdir(path),key=natural_sort_key):
files_list_miniImageNet.append(filename)
shuffle = random.sample(files_list_miniImageNet,len(files_list_miniImageNet))
# For training and validation data splitting.
random.seed(500)
def get_training_and_valid_sets(file_list):
split = 0.64
split_index = floor(len(file_list) * split)
# Training.
training = file_list[:split_index]
# Valid.
validation = file_list[split_index:]
return training, validation
trainlist_final,_ = get_training_and_valid_sets(shuffle)
_,vallist = get_training_and_valid_sets(shuffle)
########################### Load Images (size 84 x 84) ##############################
def load_images(path, size = (84,84)):
data_list = list()# enumerate filenames in directory, assume all are images
for filename in sorted(os.listdir(path),key=natural_sort_key):
pixels = load_img(path + filename, target_size = size)# Convert to numpy array.
pixels = img_to_array(pixels).astype('float32')
pixels = cv2.resize(pixels,(84,84))
pixels = pixels/255
data_list.append(pixels)
return asarray(data_list)
train_img = []
for train in trainlist_final:
data_train_img = load_images(path + '/' + train + '/')
train_img.append(data_train_img)
############# Train, valid images in array list format ##################
TRAIN = []
for i in range (len(train_img)):
TRAIN.append(train_img[i][0:600])
val_img = []
for val in vallist:
data_val_img = load_images(path + '/' + val + '/')
val_img.append(data_val_img)
############# Train, valid images + labels in array list format ##################
train_img_final = []
val_img_final = []
train_label_final = []
val_label_final = []
for a in range (len(TRAIN)):
for b in range (600): # Each class has 600 images.
train_img_final.append(train_img[a][b])
train_label_final.append(a)
for c in range (len(val_img)):
for d in range (600): # Each class has 600 images.
val_img_final.append(val_img[c][d])
val_label_final.append(c+60)
############# Reassemble in tuple format. ##################
train_array = []
val_array = []
for a,b in zip(train_img_final,train_label_final):
train_array.append((a,b))
for c,d in zip(val_img_final,val_label_final):
val_array.append((c,d))
################## shuffle #############################
from sklearn.utils import shuffle
train_array = shuffle(train_array)
val_array = shuffle(val_array)
new_X_train = [x[0] for x in train_array]
new_y_train = [x[1] for x in train_array]
new_X_val = [x[0] for x in val_array]
new_y_val = [x[1] for x in val_array]