forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEssentialViewGraphExample.cpp
138 lines (109 loc) · 4.38 KB
/
EssentialViewGraphExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file EssentialViewGraphExample.cpp
* @brief View-graph calibration with essential matrices.
* @author Frank Dellaert
* @date October 2024
*/
#include <gtsam/geometry/Cal3f.h>
#include <gtsam/geometry/EssentialMatrix.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/EdgeKey.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/sfm/TransferFactor.h> // Contains EssentialTransferFactorK
#include <vector>
#include "SFMdata.h" // For createPoints() and posesOnCircle()
using namespace std;
using namespace gtsam;
using namespace symbol_shorthand; // For K(symbol)
// Main function
int main(int argc, char* argv[]) {
// Define the camera calibration parameters
Cal3f cal(50.0, 50.0, 50.0);
// Create the set of 8 ground-truth landmarks
vector<Point3> points = createPoints();
// Create the set of 4 ground-truth poses
vector<Pose3> poses = posesOnCircle(4, 30);
// Calculate ground truth essential matrices, 1 and 2 poses apart
auto E1 = EssentialMatrix::FromPose3(poses[0].between(poses[1]));
auto E2 = EssentialMatrix::FromPose3(poses[0].between(poses[2]));
// Simulate measurements from each camera pose
std::array<std::array<Point2, 8>, 4> p;
for (size_t i = 0; i < 4; ++i) {
PinholeCamera<Cal3f> camera(poses[i], cal);
for (size_t j = 0; j < 8; ++j) {
p[i][j] = camera.project(points[j]);
}
}
// Create the factor graph
NonlinearFactorGraph graph;
using Factor = EssentialTransferFactorK<Cal3f>;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
// Vectors to collect tuples for each factor
std::vector<std::tuple<Point2, Point2, Point2>> tuples1, tuples2, tuples3;
// Collect data for the three factors
for (size_t j = 0; j < 8; ++j) {
tuples1.emplace_back(p[a][j], p[b][j], p[c][j]);
tuples2.emplace_back(p[a][j], p[c][j], p[b][j]);
tuples3.emplace_back(p[c][j], p[b][j], p[a][j]);
}
// Add transfer factors between views a, b, and c.
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(b, c), tuples1);
graph.emplace_shared<Factor>(EdgeKey(a, b), EdgeKey(b, c), tuples2);
graph.emplace_shared<Factor>(EdgeKey(a, c), EdgeKey(a, b), tuples3);
}
// Formatter for printing keys
auto formatter = [](Key key) {
if (Symbol(key).chr() == 'k') {
return (string)Symbol(key);
} else {
EdgeKey edge(key);
return (std::string)edge;
}
};
graph.print("Factor Graph:\n", formatter);
// Create a delta vector to perturb the ground truth (small perturbation)
Vector5 delta;
delta << 1, 1, 1, 1, 1;
delta *= 1e-2;
// Create the initial estimate for essential matrices
Values initialEstimate;
for (size_t a = 0; a < 4; ++a) {
size_t b = (a + 1) % 4; // Next camera
size_t c = (a + 2) % 4; // Camera after next
initialEstimate.insert(EdgeKey(a, b), E1.retract(delta));
initialEstimate.insert(EdgeKey(a, c), E2.retract(delta));
}
// Insert initial calibrations (using K symbol)
for (size_t i = 0; i < 4; ++i) {
initialEstimate.insert(K(i), cal);
}
initialEstimate.print("Initial Estimates:\n", formatter);
graph.printErrors(initialEstimate, "Initial Errors:\n", formatter);
// Optimize the graph and print results
LevenbergMarquardtParams params;
params.setlambdaInitial(1000.0); // Initialize lambda to a high value
params.setVerbosityLM("SUMMARY");
Values result =
LevenbergMarquardtOptimizer(graph, initialEstimate, params).optimize();
cout << "Initial error = " << graph.error(initialEstimate) << endl;
cout << "Final error = " << graph.error(result) << endl;
result.print("Final Results:\n", formatter);
E1.print("Ground Truth E1:\n");
E2.print("Ground Truth E2:\n");
return 0;
}