-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
337 lines (270 loc) · 13.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import argparse
import pprint
import numpy as np
import os
from tqdm import tqdm
from omegaconf import OmegaConf
import nvidia_smi
import time
import torch
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Subset, DataLoader
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, confusion_matrix
from sklearn.model_selection import train_test_split
from imblearn.metrics import geometric_mean_score
from models import TableHybridTransformer
from datasets.embedding import EmbeddingDataset
from utils.logger import create_logger
def parse_args():
parser = argparse.ArgumentParser("Intrusion Detection System")
# Dataset
parser.add_argument('--cfg_file', type=str, default="configs/hybrid_transformer.yaml", help="config File Path", )
parser.add_argument('--gpu_id', type=int, default=1, help="GPU I'D")
args = parser.parse_args()
return args
def get_gpu_used(gpu_id):
# GPU consumption (in GB)
nvidia_smi.nvmlInit()
handle = nvidia_smi.nvmlDeviceGetHandleByIndex(gpu_id)
info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)
gpu_used = info.used / (1024 ** 3)
nvidia_smi.nvmlShutdown()
return gpu_used
def main():
args = parse_args()
start_time = time.time()
sleep_gpu = get_gpu_used(args.gpu_id)
cfg = OmegaConf.load(args.cfg_file)
device = torch.device(f"cuda:{args.gpu_id}") if torch.cuda.is_available() else torch.device("cpu")
logger, tb_dir = create_logger("logs", cfg.DATASETS.DATA_TYPE)
logger.info(pprint.pformat(cfg))
# create tensorboard
writer = SummaryWriter(log_dir=tb_dir)
# Dataset settings
if cfg.DATASETS.DATA_TYPE == "unsw_nb15":
drop_cols=["id"]
cat_cols=["proto", "service", "state", "label"]
cont_cols = [
'dur', 'spkts', 'dpkts', 'sbytes',
'dbytes', 'rate', 'sttl', 'dttl', 'sload', 'dload', 'sloss', 'dloss',
'sinpkt', 'dinpkt', 'sjit', 'djit', 'swin', 'stcpb', 'dtcpb', 'dwin',
'tcprtt', 'synack', 'ackdat', 'smean', 'dmean', 'trans_depth',
'response_body_len', 'ct_srv_src', 'ct_state_ttl', 'ct_dst_ltm',
'ct_src_dport_ltm', 'ct_dst_sport_ltm', 'ct_dst_src_ltm',
'is_ftp_login', 'ct_ftp_cmd', 'ct_flw_http_mthd', 'ct_src_ltm',
'ct_srv_dst', 'is_sm_ips_ports', 'label'
]
target="attack_cat"
elif cfg.DATASETS.DATA_TYPE == "bot_iot":
drop_cols=[]
cat_cols=["proto", "state"]
cont_cols = [
'AR_P_Proto_P_Dport', 'AR_P_Proto_P_DstIP',
'AR_P_Proto_P_Sport', 'AR_P_Proto_P_SrcIP',
'N_IN_Conn_P_DstIP', 'N_IN_Conn_P_SrcIP',
'Pkts_P_State_P_Protocol_P_DestIP',
'Pkts_P_State_P_Protocol_P_SrcIP', 'TnBPDstIP', 'TnBPSrcIP',
'TnP_PDstIP', 'TnP_PSrcIP', 'TnP_PerProto', 'TnP_Per_Dport',
'bytes', 'dbytes', 'dpkts', 'drate', 'dur', 'flgs_number',
'ltime', 'max', 'mean', 'min', 'pkSeqID', 'pkts',
'proto_number', 'rate', 'sbytes', 'seq', 'spkts', 'srate',
'state_number', 'stddev', 'stime', 'sum'
]
target="category"
elif cfg.DATASETS.DATA_TYPE == "cicids":
drop_cols=[]
cat_cols=["Protocol"]
cont_cols = [
'ACK Flag Cnt', 'Active Max', 'Active Mean', 'Active Min',
'Active Std', 'Bwd Blk Rate Avg', 'Bwd Byts/b Avg',
'Bwd Header Len', 'Bwd IAT Max', 'Bwd IAT Mean',
'Bwd IAT Min', 'Bwd IAT Std', 'Bwd IAT Tot', 'Bwd PSH Flags',
'Bwd Pkt Len Max', 'Bwd Pkt Len Mean', 'Bwd Pkt Len Min',
'Bwd Pkt Len Std', 'Bwd Pkts/b Avg', 'Bwd Pkts/s',
'Bwd Seg Size Avg', 'Bwd URG Flags', 'CWE Flag Count',
'Down/Up Ratio', 'Dst Port', 'ECE Flag Cnt', 'FIN Flag Cnt',
'Flow Byts/s', 'Flow Duration', 'Flow IAT Max', 'Flow IAT Mean',
'Flow IAT Min', 'Flow IAT Std', 'Flow Pkts/s', 'Fwd Act Data Pkts',
'Fwd Blk Rate Avg', 'Fwd Byts/b Avg', 'Fwd Header Len', 'Fwd IAT Max',
'Fwd IAT Mean', 'Fwd IAT Min', 'Fwd IAT Std', 'Fwd IAT Tot', 'Fwd PSH Flags',
'Fwd Pkt Len Max', 'Fwd Pkt Len Mean', 'Fwd Pkt Len Min',
'Fwd Pkt Len Std', 'Fwd Pkts/b Avg', 'Fwd Pkts/s', 'Fwd Seg Size Avg',
'Fwd Seg Size Min', 'Fwd URG Flags', 'Idle Max', 'Idle Mean',
'Idle Min', 'Idle Std', 'Init Bwd Win Byts', 'Init Fwd Win Byts',
'PSH Flag Cnt', 'Pkt Len Max', 'Pkt Len Mean', 'Pkt Len Min',
'Pkt Len Std', 'Pkt Len Var', 'Pkt Size Avg', 'RST Flag Cnt',
'SYN Flag Cnt', 'Subflow Bwd Byts', 'Subflow Bwd Pkts',
'Subflow Fwd Byts', 'Subflow Fwd Pkts', 'Tot Bwd Pkts', 'Tot Fwd Pkts',
'TotLen Bwd Pkts', 'TotLen Fwd Pkts', 'URG Flag Cnt'
]
target="Label"
elif cfg.DATASETS.DATA_TYPE == "nsl_kdd":
drop_cols=[]
cat_cols=['protocol_type', 'service', 'flag']
cont_cols = [
'duration', 'src_bytes', 'dst_bytes', 'land', 'wrong_fragment', 'urgent', 'hot', 'num_failed_logins',
'logged_in', 'num_compromised', 'root_shell', 'su_attempted', 'num_root', 'num_file_creations', 'num_shells', 'num_access_files', 'num_outbound_cmds',
'is_host_login', 'is_guest_login', 'count', 'srv_count', 'serror_rate', 'srv_serror_rate', 'rerror_rate', 'srv_rerror_rate', 'same_srv_rate', 'diff_srv_rate',
'srv_diff_host_rate', 'dst_host_count', 'dst_host_srv_count', 'dst_host_same_srv_rate', 'dst_host_diff_srv_rate', 'dst_host_same_src_port_rate',
'dst_host_srv_diff_host_rate', 'dst_host_serror_rate', 'dst_host_srv_serror_rate', 'dst_host_rerror_rate', 'dst_host_srv_rerror_rate', 'level'
]
target = "attack"
else:
raise NotImplementedError
data_set = EmbeddingDataset(
df_path=cfg.DATASETS.PATH,
data_type=cfg.DATASETS.DATA_TYPE,
drop_cols=drop_cols,
cat_cols=cat_cols,
cont_cols=cont_cols,
target=target,
latent_dim=cfg.DATASETS.LATENT_DIM,
is_reduce=cfg.DATASETS.REDUCE,
reduced_weight_path=cfg.DATASETS.REDUCE_WEIGHT_PATH
)
# Split Dataset
# Random
# train_indices, val_indices = train_test_split(list(range(len(data_set))), test_size=0.2)
# Equal per class
label_indices = [[] for _ in range(cfg.DATASETS.N_CLASSES)]
for idx, batch in enumerate(data_set):
label_indices[batch["target"]].append(idx)
# Split each label's indices into train and validation sets
train_indices, val_indices = [], []
for label_idx in label_indices:
train_idx, val_idx = train_test_split(label_idx, test_size=0.2, random_state=42)
train_indices.extend(train_idx)
val_indices.extend(val_idx)
train_set = Subset(data_set, train_indices)
val_set = Subset(data_set, val_indices)
train_loader = DataLoader(train_set, batch_size=cfg.DATASETS.BATCH_SIZE, num_workers=8, pin_memory=True, shuffle=True, drop_last=True)
val_loader = DataLoader(val_set, batch_size=cfg.DATASETS.BATCH_SIZE, num_workers=8, pin_memory=True, shuffle=True)
if cfg.DATASETS.REDUCE:
continuous_dim = cfg.DATASETS.LATENT_DIM
else:
continuous_dim = len(cont_cols)
model = TableHybridTransformer(
cfg=cfg,
categorical_dim=len(cat_cols),
continuous_dim=continuous_dim,
categorical_cardinality=data_set.categorical_cardinality,
output_dim=cfg.DATASETS.N_CLASSES
)
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=cfg.TRAIN.WEIGHT_DECAY)
sched = torch.optim.lr_scheduler.OneCycleLR(optimizer, cfg.TRAIN.LR, epochs=cfg.TRAIN.EPOCHS, steps_per_epoch=len(train_loader))
val_acc_track = 0
for epoch in range(cfg.TRAIN.EPOCHS):
model.train()
losses = 0
with tqdm(train_loader, unit="batch") as tloader:
for batch in tloader:
tloader.set_description("Epoch {}".format(epoch))
batch = {k: v.to(device=device, non_blocking=True) for k, v in batch.items()}
optimizer.zero_grad()
attention_weights, pred = model(batch)
if cfg.TRAIN.SCHEME == 2:
n_top = int(cfg.DATASETS.BATCH_SIZE * cfg.TRAIN.BETA)
n_down = cfg.DATASETS.BATCH_SIZE - n_top
_, top_idx = torch.topk(attention_weights.squeeze(), n_top)
_, down_idx = torch.topk(attention_weights.squeeze(), n_down, largest = False)
high_mean = torch.mean(attention_weights[top_idx])
low_mean = torch.mean(attention_weights[down_idx])
diff = low_mean - high_mean + cfg.TRAIN.MARGIN
diff = max(torch.tensor(0), diff)
else:
diff = torch.tensor(0)
ce_loss = criterion(pred, batch["target"])
loss = ce_loss + diff
loss.backward()
optimizer.step()
sched.step()
losses += loss.item()
tloader.set_postfix(loss=loss.item())
train_loss = losses/len(train_loader)
msg = 'Train Epoch : {}\t Training Loss : {}'.format(epoch, train_loss)
logger.info(msg)
model.eval()
tar_list = []
pred_list = []
losses = 0
with torch.no_grad():
with tqdm(val_loader, unit="batch") as tloader:
for batch in tloader:
tloader.set_description("Epoch {}".format(epoch))
batch = {k: v.to(device=device, non_blocking=True) for k, v in batch.items()}
_, pred = model(batch)
_, predicted = torch.max(pred.data, 1)
tar_list.append(batch["target"].cpu().numpy())
pred_list.append(predicted.cpu().numpy())
loss = criterion(pred, batch["target"])
losses += loss.item()
tloader.set_postfix(loss=loss.item())
val_loss = losses/len(val_loader)
tar_list_np = np.concatenate(tar_list)
pred_list_np = np.concatenate(pred_list)
cm = confusion_matrix(tar_list_np, pred_list_np)
class_acc = cm.diagonal()/cm.sum(axis=1)
class_precision = precision_score(pred_list_np, tar_list_np, average=None)
class_f1 = f1_score(pred_list_np, tar_list_np, average=None)
class_recall = recall_score(pred_list_np, tar_list_np, average=None)
class_g_mean = geometric_mean_score(tar_list_np, pred_list_np, average=None)
accuracy = accuracy_score(pred_list_np, tar_list_np)
precision = precision_score(pred_list_np, tar_list_np, average='macro')
f1 = f1_score(pred_list_np, tar_list_np, average='macro')
recall = recall_score(pred_list_np, tar_list_np, average='macro')
g_mean = geometric_mean_score(tar_list_np, pred_list_np)
gpu_mem = get_gpu_used(args.gpu_id) - sleep_gpu
logger.info('Class Accuracy')
logger.info(pprint.pformat(class_acc))
logger.info('Class Precision')
logger.info(pprint.pformat(class_precision))
logger.info('Class F1 Score')
logger.info(pprint.pformat(class_f1))
logger.info('Class Recall')
logger.info(pprint.pformat(class_recall))
logger.info("Class G Mean")
logger.info(pprint.pformat(class_g_mean))
msg = 'Eval Epoch : {}\t Validation Loss {}\t Accuracy : {}\t Precision : {}\t F1_score : {}\t Recall : {}\t G Mean : {}'.format(
epoch, val_loss, accuracy, precision, f1, recall, g_mean
)
logger.info(msg)
writer.add_scalar("Loss/Train", train_loss, epoch)
writer.add_scalar("Loss/Val", val_loss, epoch)
writer.add_scalar("Metrics/Accuracy", accuracy, epoch)
writer.add_scalar("Metrics/Precision", precision, epoch)
writer.add_scalar("Metrics/Recall", recall, epoch)
writer.add_scalar("Metrics/F1", f1, epoch)
writer.add_scalar("Metrics/GMean", f1, epoch)
writer.add_scalar("Utils/GPU", gpu_mem, epoch)
if accuracy > val_acc_track:
ckpt = {
"model_dict": model.state_dict(),
'val_loss' : val_loss,
'epoch': epoch,
'accuracy': accuracy,
'precision' : precision,
'f1_score' : f1,
'recall' : recall,
"gmean": g_mean,
"cm": cm,
'class_acc' : class_acc,
'class_precision' : class_precision,
'class_f1' : class_f1,
'class_recall' : class_recall,
"class_g_mean": class_g_mean,
}
save_path = os.path.join(cfg.TRAIN.WEIGHT_PATH, f'best_model_{cfg.DATASETS.DATA_TYPE}_scheme_{cfg.TRAIN.SCHEME}_{cfg.DATASETS.REDUCE}.pt')
torch.save(ckpt, save_path)
logger.info(f'Best Model saved with accuracy {accuracy}')
val_acc_track = accuracy
logger.info("Training finished")
msg = "accuracy: {} precision: {} f1: {} recall: {}".format(
ckpt["accuracy"], ckpt["precision"], ckpt["f1_score"], ckpt["recall"]
)
logger.info(msg)
end_time = time.time()
logger.info(f"finished. Time taken {end_time - start_time}")
if __name__ == "__main__":
main()