-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator.py
256 lines (187 loc) · 6.15 KB
/
generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from random import choice, random, randrange
from typing import Any
from xeger import Xeger
from context import context
from schema import params
from utils import type_convert
# record how many times 'gen()' called
gen_cnt = 0
# how many times generation collided
gen_col_cnt = 0
# how many times generation failed (and leave it None)
gen_failed_cnt = 0
class BaseGenerator:
rule_name: str
def __init__(self) -> None:
self.condition = "True"
def set_props(self, props: dict[str, Any]):
self.args: dict[str, Any] = props.get("args", {})
self.unique: bool = props.get("unique", False)
self.value: str = props.get("value", "")
self.condition: str = props.get("if", "True")
self.convert = props.get("type", None)
self.limit: str | None = props.get("limit", None)
self._set = set()
def assert_condition(self):
return bool(eval(self.condition, context))
def gen(self) -> Any:
pass # return None
def _converted(gen):
def wrap_func(self: BaseGenerator):
global gen_cnt, gen_col_cnt, gen_failed_cnt
max_try = params.get("max_try", 100)
for _ in range(max_try):
r = gen(self)
gen_cnt += 1
# test unique
if self.unique:
if r in self._set:
gen_col_cnt += 1
continue
else:
self._set.add(r)
# test limit
if self.limit:
if not eval(self.limit, {"value": r, **context}):
gen_col_cnt += 1
continue
return type_convert(r, self.convert)
gen_failed_cnt += 1
return None
return wrap_func
class EvalGenerator(BaseGenerator):
rule_name = "eval"
@_converted
def gen(self):
return eval(self.value, context)
class RangeGenerator(BaseGenerator):
rule_name = "range"
def set_props(self, props: dict[str, Any]):
super().set_props(props)
start, end = self.value.split("...")
assert end and start
try:
self.start_i = int(start)
self.end_i = int(end)
self.as_float = False
except ValueError:
self.start = float(start)
self.end = float(end)
self.width = self.end - self.start
self.as_float = True
@_converted
def gen(self):
if self.as_float:
return random() * self.width + self.end
else:
return randrange(self.start_i, self.end_i + 1)
class RegexGenerator(BaseGenerator):
rule_name = "regex"
def __init__(self) -> None:
super().__init__()
self._x = Xeger()
@_converted
def gen(self):
return self._x.xeger(self.value)
class ForeignGenerator(BaseGenerator):
rule_name = "foreign"
def set_props(self, props: dict[str, Any]):
super().set_props(props)
# cast mode
self.cast_mode = self.args.get("cast", None)
assert self.cast_mode
# source field
self.table, self.field = self.value.split(".")
@_converted
def gen(self):
if not hasattr(self, "data_list"):
self.data_list: list = [*context["__data_map__"][self.table][self.field]]
# cast to foreign field
if self.cast_mode == "one":
try:
c = choice(self.data_list)
self.data_list.remove(c)
return c
except:
return None
elif self.cast_mode == "random":
return choice(self.data_list)
elif self.cast_mode == "filter":
# get filter list
filters = self.args["filters"]
if type(filters) is not list:
filters = [filters]
# indexes of filtered lines
indexes = {i for i in range(len(self.data_list))}
for f in filters:
field_name = f["field"]
condition = f["condition"]
filtered_list = context["__data_map__"][self.table][field_name]
# check condition
filtered_list = list(
filter(
lambda item: eval(condition, {"field": item[1], **context}),
enumerate(filtered_list),
)
)
# map to index
index_set = set(map(lambda item: item[0], filtered_list))
indexes &= index_set
# generate choices list
choices = list(
map(
lambda item: item[1],
filter(lambda item: item[0] in indexes, enumerate(self.data_list)),
)
)
try:
return choice(choices)
except:
return None
else:
return None
class ConstGenerator(BaseGenerator):
rule_name = "const"
@_converted
def gen(self):
return str(self.value)
class EnumGenerator(BaseGenerator):
rule_name = "enum"
@_converted
def gen(self) -> Any:
return choice(self.value)
class NoneGenerator(BaseGenerator):
rule_name = "none"
@_converted
def gen(self):
return None
class IncreaseGenerator(BaseGenerator):
rule_name = "increase"
def set_props(self, props: dict[str, Any]):
super().set_props(props)
self.n = int(self.value) - 1
@_converted
def gen(self) -> Any:
self.n += 1
return self.n
class DecreaseGenerator(BaseGenerator):
rule_name = "decrease"
def set_props(self, props: dict[str, Any]):
super().set_props(props)
self.n = int(self.value) + 1
@_converted
def gen(self) -> Any:
self.n -= 1
return self.n
_rule_class_mapping = {
generator.rule_name: generator for generator in BaseGenerator.__subclasses__()
}
# export rule list
rules = list(_rule_class_mapping.keys())
# default generator that generate nothing (None)
default_generator = BaseGenerator()
# method to access generators
def gen(rule):
return _rule_class_mapping.get(rule, BaseGenerator)()
if __name__ == "__main__":
print(rules)