This repository has been archived by the owner on Jul 5, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 878
/
Copy pathtest.py
119 lines (94 loc) · 4.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os,time,cv2, sys, math
import tensorflow as tf
import argparse
import numpy as np
from utils import utils, helpers
from builders import model_builder
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, default=None, required=True, help='The path to the latest checkpoint weights for your model.')
parser.add_argument('--crop_height', type=int, default=512, help='Height of cropped input image to network')
parser.add_argument('--crop_width', type=int, default=512, help='Width of cropped input image to network')
parser.add_argument('--model', type=str, default=None, required=True, help='The model you are using')
parser.add_argument('--dataset', type=str, default="CamVid", required=False, help='The dataset you are using')
args = parser.parse_args()
# Get the names of the classes so we can record the evaluation results
print("Retrieving dataset information ...")
class_names_list, label_values = helpers.get_label_info(os.path.join(args.dataset, "class_dict.csv"))
class_names_string = ""
for class_name in class_names_list:
if not class_name == class_names_list[-1]:
class_names_string = class_names_string + class_name + ", "
else:
class_names_string = class_names_string + class_name
num_classes = len(label_values)
# Initializing network
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess=tf.Session(config=config)
net_input = tf.placeholder(tf.float32,shape=[None,None,None,3])
net_output = tf.placeholder(tf.float32,shape=[None,None,None,num_classes])
network, _ = model_builder.build_model(args.model, net_input=net_input, num_classes=num_classes, crop_width=args.crop_width, crop_height=args.crop_height, is_training=False)
sess.run(tf.global_variables_initializer())
print('Loading model checkpoint weights ...')
saver=tf.train.Saver(max_to_keep=1000)
saver.restore(sess, args.checkpoint_path)
# Load the data
print("Loading the data ...")
train_input_names,train_output_names, val_input_names, val_output_names, test_input_names, test_output_names = utils.prepare_data(dataset_dir=args.dataset)
# Create directories if needed
if not os.path.isdir("%s"%("Test")):
os.makedirs("%s"%("Test"))
target=open("%s/test_scores.csv"%("Test"),'w')
target.write("test_name, test_accuracy, precision, recall, f1 score, mean iou, %s\n" % (class_names_string))
scores_list = []
class_scores_list = []
precision_list = []
recall_list = []
f1_list = []
iou_list = []
run_times_list = []
# Run testing on ALL test images
for ind in range(len(test_input_names)):
sys.stdout.write("\rRunning test image %d / %d"%(ind+1, len(test_input_names)))
sys.stdout.flush()
input_image = np.expand_dims(np.float32(utils.load_image(test_input_names[ind])[:args.crop_height, :args.crop_width]),axis=0)/255.0
gt = utils.load_image(test_output_names[ind])[:args.crop_height, :args.crop_width]
gt = helpers.reverse_one_hot(helpers.one_hot_it(gt, label_values))
st = time.time()
output_image = sess.run(network,feed_dict={net_input:input_image})
run_times_list.append(time.time()-st)
output_image = np.array(output_image[0,:,:,:])
output_image = helpers.reverse_one_hot(output_image)
out_vis_image = helpers.colour_code_segmentation(output_image, label_values)
accuracy, class_accuracies, prec, rec, f1, iou = utils.evaluate_segmentation(pred=output_image, label=gt, num_classes=num_classes)
file_name = utils.filepath_to_name(test_input_names[ind])
target.write("%s, %f, %f, %f, %f, %f"%(file_name, accuracy, prec, rec, f1, iou))
for item in class_accuracies:
target.write(", %f"%(item))
target.write("\n")
scores_list.append(accuracy)
class_scores_list.append(class_accuracies)
precision_list.append(prec)
recall_list.append(rec)
f1_list.append(f1)
iou_list.append(iou)
gt = helpers.colour_code_segmentation(gt, label_values)
cv2.imwrite("%s/%s_pred.png"%("Test", file_name),cv2.cvtColor(np.uint8(out_vis_image), cv2.COLOR_RGB2BGR))
cv2.imwrite("%s/%s_gt.png"%("Test", file_name),cv2.cvtColor(np.uint8(gt), cv2.COLOR_RGB2BGR))
target.close()
avg_score = np.mean(scores_list)
class_avg_scores = np.mean(class_scores_list, axis=0)
avg_precision = np.mean(precision_list)
avg_recall = np.mean(recall_list)
avg_f1 = np.mean(f1_list)
avg_iou = np.mean(iou_list)
avg_time = np.mean(run_times_list)
print("Average test accuracy = ", avg_score)
print("Average per class test accuracies = \n")
for index, item in enumerate(class_avg_scores):
print("%s = %f" % (class_names_list[index], item))
print("Average precision = ", avg_precision)
print("Average recall = ", avg_recall)
print("Average F1 score = ", avg_f1)
print("Average mean IoU score = ", avg_iou)
print("Average run time = ", avg_time)