-
Notifications
You must be signed in to change notification settings - Fork 90
/
Copy pathpalHashBaseImpl.h
647 lines (578 loc) · 24.6 KB
/
palHashBaseImpl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/*
***********************************************************************************************************************
*
* Copyright (c) 2014-2024 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
**********************************************************************************************************************/
/**
***********************************************************************************************************************
* @file palHashBaseImpl.h
* @brief PAL utility collection shared class implementations used by the HashMap and HashSet containers.
***********************************************************************************************************************
*/
#pragma once
#include "palHashBase.h"
namespace Util
{
// =====================================================================================================================
// Default hash function implementation. Simply shift the key to the right and use the resulting bits as the hash.
template<typename Key>
uint32 DefaultHashFunc<Key>::operator()(
const void* pVoidKey,
uint32 keyLen
) const
{
// We need this union to do a type conversion from a Key type to a uint for the hash function. This ensures
// that our data won't change when casting and that we don't have to guess which _cast<> operation is the most
// appropriate for each data type for which this template class may be instantiated.
union KeyUint32
{
Key key;
uint32 uint;
} hash = { };
// Get the raw bits.
const Key* pKey = static_cast<const Key*>(pVoidKey);
hash.key = *pKey;
// Discard the low bits.
return (hash.uint >> ShiftNum);
}
// =====================================================================================================================
// Hashes the specified key value with the Jenkins hash algorithm. Implementation based on the algorithm description
// found here: http://burtleburtle.net/bob/hash/doobs.html.
// By Bob Jenkins, 1996. [email protected]. You may use this
// code any way you wish, private, educational, or commercial. It's free.
// See http:\\ourworld.compuserve.com\homepages\bob_jenkins\evahash.htm
// Use for hash table lookup, or anything where one collision in 2^^32 is
// acceptable. Do NOT use for cryptographic purposes.
template<typename Key>
uint32 JenkinsHashFunc<Key>::operator()(
const void* pVoidKey,
uint32 keyLen
) const
{
// Mixing table.
static const uint8 MixTable[256] =
{
251, 175, 119, 215, 81, 14, 79, 191, 103, 49, 181, 143, 186, 157, 0, 232,
31, 32, 55, 60, 152, 58, 17, 237, 174, 70, 160, 144, 220, 90, 57, 223,
59, 3, 18, 140, 111, 166, 203, 196, 134, 243, 124, 95, 222, 179, 197, 65,
180, 48, 36, 15, 107, 46, 233, 130, 165, 30, 123, 161, 209, 23, 97, 16,
40, 91, 219, 61, 100, 10, 210, 109, 250, 127, 22, 138, 29, 108, 244, 67,
207, 9, 178, 204, 74, 98, 126, 249, 167, 116, 34, 77, 193, 200, 121, 5,
20, 113, 71, 35, 128, 13, 182, 94, 25, 226, 227, 199, 75, 27, 41, 245,
230, 224, 43, 225, 177, 26, 155, 150, 212, 142, 218, 115, 241, 73, 88, 105,
39, 114, 62, 255, 192, 201, 145, 214, 168, 158, 221, 148, 154, 122, 12, 84,
82, 163, 44, 139, 228, 236, 205, 242, 217, 11, 187, 146, 159, 64, 86, 239,
195, 42, 106, 198, 118, 112, 184, 172, 87, 2, 173, 117, 176, 229, 247, 253,
137, 185, 99, 164, 102, 147, 45, 66, 231, 52, 141, 211, 194, 206, 246, 238,
56, 110, 78, 248, 63, 240, 189, 93, 92, 51, 53, 183, 19, 171, 72, 50,
33, 104, 101, 69, 8, 252, 83, 120, 76, 135, 85, 54, 202, 125, 188, 213,
96, 235, 136, 208, 162, 129, 190, 132, 156, 38, 47, 1, 7, 254, 24, 4,
216, 131, 89, 21, 28, 133, 37, 153, 149, 80, 170, 68, 6, 169, 234, 151
};
const uint8* pKey = static_cast<const uint8*>(pVoidKey);
uint32 a = 0x9e3779b9; // The golden ratio; an arbitrary value.
uint32 b = a;
uint32 c = MixTable[pKey[0]]; // Arbitrary value.
uint32 len = keyLen;
// Handle most of the key.
while (len >= 12)
{
a = a + (pKey[0] + (static_cast<uint32>(pKey[1]) << 8) +
(static_cast<uint32>(pKey[2]) << 16) +
(static_cast<uint32>(pKey[3]) << 24));
b = b + (pKey[4] + (static_cast<uint32>(pKey[5]) << 8) +
(static_cast<uint32>(pKey[6]) << 16) +
(static_cast<uint32>(pKey[7]) << 24));
c = c + (pKey[8] + (static_cast<uint32>(pKey[9]) << 8) +
(static_cast<uint32>(pKey[10]) << 16) +
(static_cast<uint32>(pKey[11]) << 24));
a = a - b; a = a - c; a = a ^ (c >> 13);
b = b - c; b = b - a; b = b ^ (a << 8);
c = c - a; c = c - b; c = c ^ (b >> 13);
a = a - b; a = a - c; a = a ^ (c >> 12);
b = b - c; b = b - a; b = b ^ (a << 16);
c = c - a; c = c - b; c = c ^ (b >> 5);
a = a - b; a = a - c; a = a ^ (c >> 3);
b = b - c; b = b - a; b = b ^ (a << 10);
c = c - a; c = c - b; c = c ^ (b >> 15);
pKey = pKey + 12;
len = len - 12;
}
// Handle last 11 bytes.
c = c + keyLen;
switch (len)
{
case 11: c = c + (static_cast<uint32>(pKey[10]) << 24); [[fallthrough]];
case 10: c = c + (static_cast<uint32>(pKey[9]) << 16); [[fallthrough]];
case 9: c = c + (static_cast<uint32>(pKey[8]) << 8); [[fallthrough]];
// the first byte of c is reserved for the length
case 8: b = b + (static_cast<uint32>(pKey[7]) << 24); [[fallthrough]];
case 7: b = b + (static_cast<uint32>(pKey[6]) << 16); [[fallthrough]];
case 6: b = b + (static_cast<uint32>(pKey[5]) << 8); [[fallthrough]];
case 5: b = b + pKey[4]; [[fallthrough]];
case 4: a = a + (static_cast<uint32>(pKey[3]) << 24); [[fallthrough]];
case 3: a = a + (static_cast<uint32>(pKey[2]) << 16); [[fallthrough]];
case 2: a = a + (static_cast<uint32>(pKey[1]) << 8); [[fallthrough]];
case 1: a = a + pKey[0];
// case 0: nothing left to add
}
a = a - b; a = a - c; a = a ^ (c >> 13);
b = b - c; b = b - a; b = b ^ (a << 8);
c = c - a; c = c - b; c = c ^ (b >> 13);
a = a - b; a = a - c; a = a ^ (c >> 12);
b = b - c; b = b - a; b = b ^ (a << 16);
c = c - a; c = c - b; c = c ^ (b >> 5);
a = a - b; a = a - c; a = a ^ (c >> 3);
b = b - c; b = b - a; b = b ^ (a << 10);
c = c - a; c = c - b; c = c ^ (b >> 15);
return c;
}
// =====================================================================================================================
// Hashes the specified C-style string key with the Jenkins hash algorithm.
template<typename Key>
uint32 StringJenkinsHashFunc<Key>::operator()(
const void* pVoidKey,
uint32 keyLen
) const
{
const Key* pKey = static_cast<const Key*>(pVoidKey);
const Key key = *pKey;
keyLen = static_cast<uint32>(strlen(key));
return JenkinsHashFunc<Key>::operator()(key, keyLen);
}
// =====================================================================================================================
// Returns true if the strings in key1 and key2 are the same.
template<typename Key>
bool StringEqualFunc<Key>::operator()(
const Key& key1,
const Key& key2
) const
{
bool ret = false;
// Can't do strcmp on null.
if ((key1 != nullptr) && (key2 != nullptr))
{
ret = (strcmp(key1, key2) == 0);
}
else if ((key1 == nullptr) && (key2 == nullptr))
{
ret = true;
}
return ret;
}
// =====================================================================================================================
// Allocates a new block of memory.
template <typename Allocator>
void* HashAllocator<Allocator>::Allocate()
{
void* pMemory = nullptr;
// Leave pBlock null if this is the first allocation made with this object.
MemBlock* pBlock = (m_curBlock >= 0) ? &m_blocks[m_curBlock] : nullptr;
// If current block is used up (or we haven't allocated one yet), go to next.
if ((pBlock == nullptr) || (pBlock->curGroup >= pBlock->numGroups))
{
// Only advance to the next block if the current one had memory allocated to it (which implies that it's
// full).
uint32_t nextBlock = m_curBlock;
if ((pBlock == nullptr) || (pBlock->pMemory != nullptr))
{
nextBlock++;
}
PAL_ASSERT(nextBlock < NumBlocks);
pBlock = &m_blocks[nextBlock];
PAL_ASSERT(pBlock->curGroup == 0);
// Allocate memory if needed (note that this may rarely fail)
if (pBlock->pMemory == nullptr)
{
// Here we allocate another chunk of memory from outside, that we can later distribute internally
// to whichever bucket needs another group linked to it.
PAL_DPWARN("HashAllocator allocating more external memory, enough to hold %u Groups. "
"Consider increasing the GroupSize(%llu) in order to fit more Entries"
"In a Group.",
pBlock->numGroups, static_cast<uint64>(m_groupSize));
pBlock->pMemory = PAL_CALLOC_ALIGNED(pBlock->numGroups * m_groupSize, m_alignment,
m_pAllocator, AllocInternal);
}
// If we successfully allocated memory (or the block already had some), make it current
if (pBlock->pMemory != nullptr)
{
m_curBlock = nextBlock;
}
}
if (pBlock->pMemory != nullptr)
{
pMemory = VoidPtrInc(pBlock->pMemory, ((pBlock->curGroup++) * m_groupSize));
}
return pMemory;
}
// =====================================================================================================================
// Recycles all allocated memory. Memory isn't actually freed, but becomes available for reuse.
template <typename Allocator>
void HashAllocator<Allocator>::Reset()
{
for (int32 i = 0; i <= m_curBlock; ++i)
{
PAL_ASSERT(m_blocks[i].pMemory != nullptr);
memset(m_blocks[i].pMemory, 0, m_blocks[i].numGroups * m_groupSize);
m_blocks[i].curGroup = 0;
}
m_curBlock = -1;
}
// =====================================================================================================================
// Proceeds to the next entry, null if to the end.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
void HashIterator<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::Next()
{
if (m_pCurrentEntry != nullptr)
{
PAL_ASSERT(m_pCurrentEntry < &m_pCurrentGroup[Container::EntriesInGroup]);
Entry* pNextGroup = Container::GetNextGroup(m_pCurrentGroup);
// We're in the middle of a group.
uint32 numEntries = m_pContainer->GetGroupFooterNumEntries(m_pCurrentGroup);
if ((m_pCurrentEntry < &m_pCurrentGroup[Container::EntriesInGroup - 1]) &&
(m_indexInGroup + 1 < numEntries))
{
m_pCurrentEntry++;
m_indexInGroup++;
}
// We're in the last entry of a group.
// Considering that the next chained group could be an empty group already, it is better to check the
// next group's footer->numEntries before jump to the next group. If the numEntry of the next chained
// group is 0 (invalid), we need to jump to the next bucket directly to avoid returning invalid entry.
else if ((pNextGroup != nullptr) &&
(m_indexInGroup == numEntries - 1) &&
(reinterpret_cast<GroupFooter<Entry>*>(&pNextGroup[Container::EntriesInGroup])->numEntries > 0))
{
m_pCurrentGroup = pNextGroup;
m_pCurrentEntry = pNextGroup;
m_indexInGroup = 0;
}
// The current bucket is done, step to the next.
else
{
do
{
m_currentBucket = (m_currentBucket + 1) % m_pContainer->m_numBuckets;
pNextGroup = static_cast<Entry*>(VoidPtrInc(m_pContainer->m_pMemory,
m_currentBucket * GroupSize));
numEntries = m_pContainer->GetGroupFooterNumEntries(pNextGroup);
if (numEntries > 0)
{
m_indexInGroup = 0;
break;
}
} while(m_currentBucket != m_startBucket);
if (m_currentBucket != m_startBucket)
{
m_pCurrentGroup = pNextGroup;
m_pCurrentEntry = pNextGroup;
m_indexInGroup = 0;
}
else
{
m_pCurrentEntry = nullptr;
}
}
}
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
void HashIterator<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::Reset()
{
m_currentBucket = m_startBucket;
m_indexInGroup = 0;
if (m_startBucket < m_pContainer->m_numBuckets)
{
m_pCurrentGroup = static_cast<Entry*>(VoidPtrInc(m_pContainer->m_pMemory,
m_startBucket * GroupSize));
}
else
{
m_pCurrentGroup = nullptr;
}
m_pCurrentEntry = m_pCurrentGroup;
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Result HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::Init()
{
// Each bucket's address must be aligned as Entry required.
PAL_ASSERT(IsPow2Aligned(GroupSize, alignof(Entry)));
// Since (m_numBuckets - 1) will mask the hashing result, the hash func should make sure the hashing result always
// contain enough effective bits.
m_hashFunc.Init(Log2(m_numBuckets));
// Allocate the hash table. Zero out the memory to mark all entries invalid, since a key of 0 is invalid.
m_pMemory = PAL_CALLOC_ALIGNED(m_memorySize, alignof(Entry), &m_allocator, AllocInternal);
PAL_ALERT(m_pMemory == nullptr);
return (m_pMemory != nullptr) ? Result::Success : Result::ErrorOutOfMemory;
}
// =====================================================================================================================
// Returns an iterator pointing to the first entry.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
HashIterator<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>
HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::Begin() const
{
uint32 bucket = 0;
if (m_numEntries != 0)
{
PAL_ASSERT(m_pMemory != nullptr);
for (;bucket < m_numBuckets; ++bucket)
{
Entry* pEntry = static_cast<Entry*>(VoidPtrInc(m_pMemory, bucket * GroupSize));
const uint32 numEntries = GetGroupFooterNumEntries(pEntry);
if (numEntries > 0)
{
break;
}
}
}
else
{
// If the backing memory does not exist we should return a null Iterator.
// This can be done by setting the start bucket such that it is off the end of the bucket list.
bucket = m_numBuckets;
}
return Iterator(this, bucket);
}
// =====================================================================================================================
// Empty the hash table.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
void HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::Reset()
{
if (m_pMemory != nullptr)
{
// Re-zero out the hash table.
memset(m_pMemory, 0, m_memorySize);
}
m_numEntries = 0;
m_allocator.Reset();
}
// =====================================================================================================================
// Ensures that the hash table has been allocated, then returns pointer to start group of the bucket
// corresponding to the specified key. A return of nullptr means out of memory.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Entry* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::InitAndFindBucket(
const Key& key
)
{
if (m_pMemory == nullptr)
{
Init();
}
return FindBucket(key);
}
// =====================================================================================================================
// Returns pointer to start group of the bucket corresponding to the specified key.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Entry* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::FindBucket(
const Key& key
) const
{
const uint32 bucket = m_hashFunc(&key, sizeof(key)) & (m_numBuckets - 1);
return (m_pMemory != nullptr) ? static_cast<Entry*>(VoidPtrInc(m_pMemory, bucket * GroupSize)) : nullptr;
}
// =====================================================================================================================
// Returns pointer to the next group of the spcified group.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Entry* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::GetNextGroup(
Entry* pGroup)
{
// Footer of a group stores the pointer to the next group
return HashBase::GetGroupFooterNextGroup(pGroup);
}
// =====================================================================================================================
// Allocates a new group if the footer of the specified group is null.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Entry* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::AllocateNextGroup(
Entry* pGroup)
{
// Footer of a group stores the pointer to the next group.
Entry* pNextGroup = GetGroupFooterNextGroup(pGroup);
if (pNextGroup == nullptr)
{
// This warning is useful in order to tune hash maps, but probably doesn't need to be enabled for anyone not
// actively tuning. We're not asking for more memory here, just assigning more of the memory chunk we have
// already asked for to a bucket. Each bucket starts with a group that it can place hash hits in.
// when the group for that bucket fills up, we call this function and link another group for the same bucket,
// in the form of a linked list, onto that.
// This is expected to happen a bit, as hash distributions aren't perfect. But if this happens too many times,
// you're really searching a linked list, not a hash map, which is much slower.
// It's at that point you need this warning: to help balance out the number of buckets and group sizes
// to better fit your use case.
//PAL_DPWARN("HashBase needs to allocate more internal memory after inserting %u entries. "
// "Consider increasing the NumBuckets(%u) or GroupSize(%llu) in order to "
// "fit more Entries In a Group(%u).",
// m_numEntries, m_numBuckets, GroupSize, EntriesInGroup);
// We allocate the next entry group if it does not exist.
pNextGroup = static_cast<Entry*>(m_allocator.Allocate());
SetGroupFooterNextGroup(pGroup, pNextGroup);
}
PAL_ASSERT(pNextGroup != nullptr);
return pNextGroup;
}
// =====================================================================================================================
// Return a pointer to the group footer.
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
GroupFooter<Entry>* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::GetGroupFooter(
Entry* pGroup)
{
return reinterpret_cast<GroupFooter<Entry>*>(&pGroup[EntriesInGroup]);
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
uint32 HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::GetGroupFooterNumEntries(
Entry* pGroup)
{
const uint32* pNumEntries = reinterpret_cast<uint32*>(reinterpret_cast<uintptr_t>(&pGroup[EntriesInGroup]) +
offsetof(GroupFooter<Entry>, numEntries));
uint32 numEntries;
memcpy(&numEntries, pNumEntries, sizeof(numEntries));
return numEntries;
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
void HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::SetGroupFooterNumEntries(
Entry* pGroup, uint32 numEntries)
{
uint32* pNumEntries = reinterpret_cast<uint32*>(reinterpret_cast<uintptr_t>(&pGroup[EntriesInGroup]) +
offsetof(GroupFooter<Entry>, numEntries));
memcpy(pNumEntries, &numEntries, sizeof(numEntries));
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
Entry* HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::GetGroupFooterNextGroup(
Entry* pGroup)
{
Entry** ppNextGroup = reinterpret_cast<Entry**>(reinterpret_cast<uintptr_t>(&pGroup[EntriesInGroup]) +
offsetof(GroupFooter<Entry>, pNextGroup));
Entry* pNextGroup;
memcpy(&pNextGroup, ppNextGroup, sizeof(pNextGroup));
return pNextGroup;
}
// =====================================================================================================================
template<
typename Key,
typename Entry,
typename Allocator,
typename HashFunc,
typename EqualFunc,
typename AllocFunc,
size_t GroupSize>
void HashBase<Key, Entry, Allocator, HashFunc, EqualFunc, AllocFunc, GroupSize>::SetGroupFooterNextGroup(
Entry* pGroup, Entry* pNextGroup)
{
Entry** ppNextGroup = reinterpret_cast<Entry**>(reinterpret_cast<uintptr_t>(&pGroup[EntriesInGroup]) +
offsetof(GroupFooter<Entry>, pNextGroup));
memcpy(ppNextGroup, &pNextGroup, sizeof(pNextGroup));
}
} // Util