forked from haoliangwang86/LA-OOD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ood_detectors.py
146 lines (114 loc) · 5.15 KB
/
train_ood_detectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import csv
import random
import argparse
import numpy as np
from tqdm import tqdm
from joblib import dump
from itertools import product
from sklearn.svm import OneClassSVM
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from self_adaptive_shifting import SelfAdaptiveShifting
from torch.multiprocessing import Pool, cpu_count
from global_settings import *
from utility import get_inter_outputs, sort_csv_results
parser = argparse.ArgumentParser()
parser.add_argument('--kernel', default='rbf')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--threshold', type=float, default=0.01)
parser.add_argument('--val_size', default=0.3, type=float,
help='Holdout validation set size')
parser.add_argument('--error_rate', default=0.5, type=float,
help='Pseudo OOD error rate')
parser.add_argument('--model', default='vgg16', type=str,
help='model name')
parser.add_argument('--ind', default='cifar10', type=str,
help='InD dataset name')
def main():
args = parser.parse_args()
basedir = f"saved_models/{args.model}/{args.ind}_best/"
if not os.path.exists(basedir):
os.makedirs(basedir, exist_ok=True)
best_param_filename = basedir + "best_hyperparam.csv"
fields = ['Layer', 'nu', 'gamma', 'error']
with open(best_param_filename, 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(fields)
fitting_process_filename = basedir + "fitting_process.csv"
fields = ['Layer', 'nu', 'gamma', 'error', 'error_ind', 'error_ood']
with open(fitting_process_filename, 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(fields)
layers = 0
if args.model == 'vgg16':
layers = VGG16_LAYERS
elif args.model == 'resnet34':
layers = RESNET34_LAYERS
elif args.model == 'densenet100':
layers = DENSENET100_LAYERS
cpus = cpu_count() - 1 # spare one cpu to avoid locking up the system
processes = min(cpus, len(layers))
with Pool(processes=processes) as p:
p.starmap_async(find_best_ocsvm, product([args.model], [args.ind], layers, [args.error_rate])).get()
p.close()
p.join()
for filename in [best_param_filename, fitting_process_filename]:
headers, results = sort_csv_results(filename)
with open(filename, 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(headers)
csvwriter.writerows(results)
print("All OOD detectors have been trained!")
def find_best_ocsvm(model_name, ds_name, layer_idx, ood_error_rate):
print(f"layer {layer_idx} OOD detector training started!")
args = parser.parse_args()
random.seed(args.seed)
X = np.array(get_inter_outputs(model_name, ds_name, ds_name, layer_idx, 'train'))
ss = StandardScaler()
ss.fit(X)
X = ss.transform(X)
train_X, val_X = train_test_split(X, test_size=args.val_size, random_state=args.seed)
self_adaptive_shifting = SelfAdaptiveShifting(val_X)
self_adaptive_shifting.edge_pattern_detection(args.threshold)
pseudo_outlier_X = self_adaptive_shifting.generate_pseudo_outliers()
pseudo_outlier_Y = -np.ones(len(pseudo_outlier_X))
val_Y = np.ones(len(val_X))
print(f"layer {layer_idx} pseudo feature generated.")
std = np.std(train_X)
nu_candidates = [0.001]
if args.model == "densenet":
gamma_candidates = [0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0]
else:
gamma_candidates = [0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1]
best_err = 1.0
best_gamma, best_nu = 1 / (np.size(train_X, -1) * std), 0.5
basedir = f"saved_models/{model_name}/{ds_name}_best/"
print(f"layer {layer_idx} fitting started.")
for nu in nu_candidates:
for gamma in tqdm(gamma_candidates):
model = OneClassSVM(gamma=gamma, nu=nu).fit(train_X)
err_o = 1 - np.mean(model.predict(pseudo_outlier_X) == pseudo_outlier_Y)
err_t = 1 - np.mean(model.predict(val_X) == val_Y)
err = ood_error_rate * err_o + (1. - ood_error_rate) * err_t
if err < best_err:
best_err = err
best_gamma = gamma
best_nu = nu
print(f"new best - layer {layer_idx}: nu-{nu}, gamma-{gamma}")
filename = basedir + "fitting_process.csv"
row = [layer_idx + 1, best_nu, best_gamma, f'{best_err:.4f}', f'{err_t:.4f}', f'{err_o:.4f}']
with open(filename, 'a') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(row)
filename = basedir + f"{layer_idx}.joblib"
best_model = OneClassSVM(kernel=args.kernel, gamma=best_gamma, nu=best_nu).fit(X)
dump(best_model, filename)
filename = basedir + "best_hyperparam.csv"
row = [layer_idx + 1, best_nu, best_gamma, f'{best_err:.4f}']
with open(filename, 'a') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(row)
print(f"layer {layer_idx} OOD detector training finished!")
if __name__ == '__main__':
main()