forked from haoliangwang86/LA-OOD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathco_train.py
425 lines (336 loc) · 13.9 KB
/
co_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import argparse
import os
import time
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import backbone_models.vgg as vgg
import backbone_models.resnet as resnet
import backbone_models.densenet as densenet
from sklearn.preprocessing import StandardScaler
from global_settings import *
from utility import load_ood_detector
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
parser = argparse.ArgumentParser()
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--print-freq', '-p', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--half', dest='half', action='store_true',
help='use half-precision(16-bit) ')
parser.add_argument('--epochs', default=5, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--model', default='vgg16', type=str,
help='model name')
parser.add_argument('--dataset', default='cifar10', type=str,
help='training dataset name')
parser.add_argument('--lambda_value', type=float, default=0.001,
help='ood loss regularization')
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
if args.model == "vgg16":
batch_size = 128
if args.dataset == "cifar100":
model = vgg.vgg16_cifar100()
else:
model = vgg.vgg16()
elif args.model == "resnet34":
batch_size = 128
if args.dataset == "cifar100":
model = resnet.ResNet34_cifar100()
else:
model = resnet.ResNet34()
elif args.model == "densenet100":
batch_size = 64
if args.dataset == "cifar100":
model = densenet.DenseNet100_cifar100()
else:
model = densenet.DenseNet100()
model.cuda()
cudnn.benchmark = True
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if args.dataset == "cifar10":
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root='./data', train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True),
batch_size=batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(root='./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
elif args.dataset == "cifar100":
train_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(root='./data', train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True),
batch_size=batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.CIFAR100(root='./data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# define loss function (criterion) and optimizer
criterion = co_train_loss
if args.half:
model.half()
criterion.half()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.evaluate:
validate(val_loader, model, criterion)
return
# prec1 = validate(val_loader, model, criterion)
# print('Before co-training, Best prec@1 {:.3f}'.format(prec1))
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if epoch in [0, 1, 2, 4]:
torch.save(
model.state_dict(),
f"pre_trained_backbones/{args.model}-{args.dataset}-lambda-{args.lambda_value}-epoch-{epoch+1}.h5")
print('Best prec@1 {:.3f}'.format(best_prec1))
def train(train_loader, model, criterion, optimizer, epoch):
"""
Run one train epoch
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
mean_list, std_list = get_feature_mean_and_std(model, train_loader)
ood_detectors = load_all_ood_detectors(args.model, args.dataset)
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
target = target.cuda()
input_var = input.cuda()
target_var = target
if args.half:
input_var = input_var.half()
# compute output
output_list = model.intermediate_forward(input_var)
loss = criterion(output_list, target_var, ood_detectors, mean_list, std_list)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
output = output_list[-1].float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
def validate(val_loader, model, criterion):
"""
Run evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
mean_list, std_list = get_feature_mean_and_std(model, val_loader)
ood_detectors = load_all_ood_detectors(args.model, args.dataset)
# switch to evaluate mode
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.cuda()
input_var = input.cuda()
target_var = target.cuda()
if args.half:
input_var = input_var.half()
# compute output
output_list = model.intermediate_forward(input_var)
loss = criterion(output_list, target_var, ood_detectors, mean_list, std_list)
output = output_list[-1].float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_feature_mean_and_std(model, train_loader):
model.eval()
features = None
with torch.no_grad():
for i, (input, _) in enumerate(train_loader):
input_var = input.cuda()
if args.half:
input_var = input_var.half()
# compute output
outputs = model.intermediate_forward(input_var)
# get channel mean
for i in range(len(outputs)):
outputs[i] = outputs[i].cpu().numpy()
if len(outputs[i].shape) == 4:
outputs[i] = np.mean(outputs[i], axis=(2, 3)) # batchsize x C
if features is None:
features = outputs # layers x batchsize x C
else:
for i in range(len(features)):
features[i] = np.vstack((features[i], outputs[i])) # stack each batch
mean_list = []
std_list = []
for feature in features:
ss = StandardScaler()
ss.fit(feature)
mean_list.append(ss.mean_)
std_list.append(ss.scale_)
return mean_list, std_list
def load_all_ood_detectors(model_name, ind_name):
ood_detectors = []
layers = []
if args.model == "vgg16":
layers = VGG16_LAYERS
elif args.model == "resnet34":
layers = RESNET34_LAYERS
elif args.model == "densenet100":
layers = DENSENET100_LAYERS
for layer in layers:
model = load_ood_detector(model_name, ind_name, layer)
ood_detectors.append(model)
print("OOD detectors are loaded.")
return ood_detectors
def rbf_kernel(feature, support_vector, gamma):
norm = torch.norm(feature-support_vector, dim=1)
norm = norm * norm
result = -gamma * norm
result = torch.exp(result)
return result
def prepare_detector_inputs(output, mean, std):
if len(output.shape) == 4:
output = torch.mean(output, dim=(2, 3))
# normalize feature
for i in range(output.shape[1]):
output[:, i] = (output[:, i] - mean[i]) / std[i]
X = output
Y = torch.ones(len(X))
return X, Y
def co_train_loss(output_list, target, ood_detectors, mean_list, std_list):
classification_criterion = nn.CrossEntropyLoss().cuda()
classification_loss = classification_criterion(output_list[-1], target)
detector_loss = torch.tensor(0.).cuda()
if args.model == "vgg16":
detector_idx = VGG16_LAYERS
elif args.model == "resnet34":
detector_idx = random.sample(RESNET34_LAYERS, 10)
elif args.model == "densenet100":
detector_idx = random.sample(RESNET34_LAYERS, 10)
for i in detector_idx:
detector = ood_detectors[i]
gamma = detector.gamma
support_vectors = detector.support_vectors_
dual_coef = detector.dual_coef_[0]
gamma = torch.tensor(gamma).cuda()
support_vectors = torch.tensor(support_vectors).cuda()
dual_coef = torch.tensor(dual_coef).cuda()
features, _ = prepare_detector_inputs(output_list[i], mean_list[i], std_list[i])
current_loss = torch.tensor(0.).cuda()
sum = torch.tensor(0.).cuda()
for j in range(len(support_vectors)):
sum += torch.sum(dual_coef[j] * rbf_kernel(features, support_vectors[j], gamma))
current_loss += sum
detector_loss += current_loss
detector_final_loss = detector_loss / (2 * len(detector_idx))
print(f"Classification loss: {classification_loss:.4f}")
print(f"OOD detector loss: {-args.lambda_value * detector_final_loss:.4f}")
loss = classification_loss - args.lambda_value * detector_final_loss
return loss
if __name__ == '__main__':
main()