Skip to content

Fsoft-AIC/TCM

Repository files navigation

Learning Human Motion with Temporally Conditional Mamba

Quang NguyenTri LeBaoru HuangMinh Nhat VuNgan LeThieu VoAnh Nguyen

The website and the preprint will be publish soon!

Installation

Follow these steps to install the GraspMAS framework:

  1. Clone recursively:

    git clone https://github.com/Fsoft-AIC/TCM.git
    cd TCM
  2. Prepare environment:

     conda create -n graspmas python=3.9 -y
     conda activate graspmas
     conda install -c "nvidia/label/cuda-11.8.0" cuda-toolkit
     conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
     pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py39_cu113_pyt1110/download.html
     pip install -r requirements.txt
  3. Quick start:

model = CondAMamba(
    in_channels=163,
    d_model=512,
    d_cond=128,
    n_layer=8,
    num_frames=150,
    num_joints=24,
    device="cuda",
    use_pe=1,
).to("cuda")
x = torch.rand(10, 150, 163).to("cuda")
t = torch.randint(0, 1000, (10,), device=x.device).long()
modal_emb = torch.rand(10, 150, 128).to("cuda")
o = model(x, t, modal_emb)
_param_count = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Param count: {_param_count}")
print(o.shape)
# print(model)
print(model.final_layer.linear.weight.dtype)
Traning and Validating

To train the model on mudic2dance task, please run:

bash train_music2dance.sh

To validate the model's performance, please run:

bash eval_music2dance.sh

To infer a single sample, please run:

bash infer_music2dance.sh

Citation

@article{nguyen2025learning,
  title={Learning Human Motion with Temporally Conditional Mamba},
  author={Nguyen, Quang and Le, Tri and Huang, Baoru and Vu, Minh Nhat and Le, Ngan and Vo, Thieu and Nguyen, Anh},
  journal={arXiv preprint arXiv:2510.12573},
  year={2025}
}

Acknowledgement

The code base is developed and adapt from Edge, Omomo.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published