-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_data.py
261 lines (233 loc) · 8.59 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import os
import sys
from time import sleep
from typing import Dict
import hydra
import torch
from datasets import Dataset
from dotenv import load_dotenv
from loguru import logger
from omegaconf import DictConfig
from torch.multiprocessing import spawn
from tqdm import tqdm
from lever_lm.utils import beam_filter, init_interface
from open_mmicl.interface import BaseInterface
from utils import get_cider_score, get_info_score, load_ds
@torch.inference_mode()
def generate_single_sample_icd(
interface: BaseInterface,
test_data: Dict,
cfg: DictConfig,
candidate_set: Dataset,
):
test_data_id = test_data["idx"]
# 构建candidate set
candidateidx2data = {data["idx"]: data for data in candidate_set}
test_data_id_list = [[test_data_id]]
for _ in range(cfg.few_shot_num):
new_test_data_id_list = []
new_test_score_list = []
for test_data_id_seq in test_data_id_list:
# 避免添加重复的结果 将已经添加的进行过滤
filtered_candidateidx2data = candidateidx2data.copy()
if len(test_data_id_seq) >= 2:
filter_id_list = test_data_id_seq[:-1]
for i in filter_id_list:
filtered_candidateidx2data.pop(i)
# 构建已经选好的icd + 测试样本的输入
icd_id_seq = test_data_id_seq[:-1]
choosed_icd_seq_list = [candidateidx2data[idx] for idx in icd_id_seq] + [
test_data
]
filtered_idx_list = sorted(list(filtered_candidateidx2data.keys()))
if cfg.scorer == "infoscore":
scores = get_info_score(
interface,
choosed_icd_seq_list=choosed_icd_seq_list,
candidate_set=filtered_candidateidx2data,
batch_size=cfg.batch_size,
split_token=cfg.task.split_token,
construct_order=cfg.construct_order,
)
elif cfg.scorer == "cider":
assert (
"coco" in cfg.dataset.name
), f"Now CIDEr scorer only support mscoco task"
scores = get_cider_score(
interface,
choosed_icd_seq_list,
candidate_set=filtered_candidateidx2data,
batch_size=cfg.batch_size,
train_ann_path=cfg.dataset.train_coco_annotation_file,
construct_order=cfg.construct_order,
gen_kwargs=cfg.task.gen_args,
model_name=cfg.infer_model.name,
)
# 选出最高的InfoScore
topk_scores, indices = scores.topk(cfg.beam_size)
indices = indices.tolist()
indices = list(
map(
lambda x: filtered_idx_list[x],
indices,
)
)
topk_scores = topk_scores.tolist()
for idx, score in zip(indices, topk_scores):
new_test_data_id_list.append([idx, *test_data_id_seq])
new_test_score_list.append(score)
new_test_score_list, new_test_data_id_list = beam_filter(
new_test_score_list, new_test_data_id_list, cfg.beam_size
)
test_data_id_list = new_test_data_id_list
return {
test_data_id: {"id_list": test_data_id_list, "score_list": new_test_score_list}
}
def gen_data(
rank,
cfg,
sample_data,
train_ds,
candidate_set_idx,
save_path,
):
world_size = len(cfg.gpu_ids)
process_device = f"cuda:{cfg.gpu_ids[rank]}"
subset_size = len(sample_data) // world_size
subset_start = rank * subset_size
subset_end = (
subset_start + subset_size if rank != world_size - 1 else len(sample_data)
)
subset = sample_data.select(range(subset_start, subset_end))
sub_cand_set_idx = candidate_set_idx[subset_start:subset_end]
# load several models will cost large memory at the same time.
# use sleep to load one by one.
sleep(cfg.sleep_time * rank)
interface = init_interface(cfg, device=process_device)
if cfg.scorer == "infoscore":
interface.tokenizer.padding_side = "right"
elif cfg.scorer == "cider":
interface.tokenizer.padding_side = "left"
final_res = {}
sub_res_basename = (
os.path.basename(save_path).split(".")[0]
+ f"_rank:{rank}_({subset_start}, {subset_end}).json"
)
save_path = save_path.replace(os.path.basename(save_path), sub_res_basename)
if os.path.exists(save_path):
final_res.update(json.load(open(save_path)))
logger.info(
f"Rank: {rank} reloading data from {save_path}, begin from {len(final_res)}"
)
if len(final_res) == subset_size:
logger.info(f"Rank: {rank} task is Done.")
return
subset = subset.select(range(len(final_res), len(subset)))
for i, test_data in enumerate(
tqdm(
subset,
disable=(rank != world_size - 1),
total=subset_size,
initial=len(final_res),
ncols=100,
),
):
candidate_set = train_ds.select(sub_cand_set_idx[i])
res = generate_single_sample_icd(
interface=interface,
test_data=test_data,
cfg=cfg,
candidate_set=candidate_set,
)
final_res.update(res)
with open(save_path, "w") as f:
json.dump(final_res, f)
return
@hydra.main(
version_base=None, config_path="./configs", config_name="generate_data.yaml"
)
def main(cfg: DictConfig):
if not os.path.exists(cfg.result_dir):
os.makedirs(cfg.result_dir)
cache_dir = cfg.sampler.cache_dir
if not os.path.exists(cache_dir):
os.makedirs(cache_dir)
save_dir = os.path.join(cfg.result_dir, "generated_data")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
sub_proc_save_dir = os.path.join(save_dir, "sub_proc_data")
if not os.path.exists(sub_proc_save_dir):
os.makedirs(sub_proc_save_dir)
save_file_name = (
f"{cfg.task.task_name}-{cfg.dataset.name}-"
f"{cfg.infer_model.name}-{cfg.sampler.sampler_name}-scorer:{cfg.scorer}-construct_order:{cfg.construct_order}-"
f"beam_size:{cfg.beam_size}-few_shot:{cfg.few_shot_num}-"
f"candidate_num:{cfg.sampler.candidate_num}-sample_num:{cfg.sample_num}.json"
)
sub_save_path = os.path.join(sub_proc_save_dir, save_file_name)
save_path = os.path.join(save_dir, save_file_name)
# 加载数据集
train_ds = load_ds(cfg, "train")
# sample from train idx
sampler = hydra.utils.instantiate(cfg.sampler)
sampler_result = sampler(train_ds)
anchor_data = train_ds.select(sampler_result["anchor_set"])
candidate_set_idx = [
sampler_result["candidate_set"][k] for k in sampler_result["anchor_set"]
]
# spawn(
# gen_data,
# args=(
# cfg,
# anchor_data,
# train_ds,
# candidate_set_idx,
# sub_save_path,
# ),
# nprocs=len(cfg.gpu_ids),
# join=True,
# )
gen_data(
0,
cfg,
anchor_data,
train_ds,
candidate_set_idx,
sub_save_path,
)
world_size = len(cfg.gpu_ids)
subset_size = len(anchor_data) // world_size
total_data = {}
for rank in range(world_size):
subset_start = rank * subset_size
subset_end = (
subset_start + subset_size if rank != world_size - 1 else len(anchor_data)
)
sub_res_basename = (
os.path.basename(save_path).split(".")[0]
+ f"_rank:{rank}_({subset_start}, {subset_end}).json"
)
sub_save_path = sub_save_path.replace(
os.path.basename(sub_save_path), sub_res_basename
)
with open(sub_save_path, "r") as f:
data = json.load(f)
logger.info(f"load the data from {sub_save_path}, the data length: {len(data)}")
total_data.update(data)
with open(save_path, "w") as f:
json.dump(total_data, f)
logger.info(f"save the final data to {save_path}")
@hydra.main(
version_base=None, config_path="./configs", config_name="generate_data.yaml"
)
def hydra_loguru_init(_) -> None:
hydra_path = hydra.core.hydra_config.HydraConfig.get().run.dir
job_name = hydra.core.hydra_config.HydraConfig.get().job.name
logger.remove()
logger.add(sys.stderr, level=hydra.core.hydra_config.HydraConfig.get().verbose)
logger.add(os.path.join(hydra_path, f"{job_name}.log"))
if __name__ == "__main__":
load_dotenv()
hydra_loguru_init()
main()