-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathequilibrium_constrainedborrow_labor.html
464 lines (438 loc) · 684 KB
/
equilibrium_constrainedborrow_labor.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge,IE=9,chrome=1"><meta name="generator" content="MATLAB 2020b"><title>Equilibrium Interest Rate and Wage Rate</title><style type="text/css">.rtcContent { padding: 30px; } .S0 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 28.8px; min-height: 0px; white-space: pre-wrap; color: rgb(213, 80, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 24px; font-weight: 400; text-align: left; }
.S1 { margin: 2px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
.S2 { margin: 3px 10px 5px 4px; padding: 0px; line-height: 20px; min-height: 0px; white-space: pre-wrap; color: rgb(60, 60, 60); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 20px; font-weight: 700; text-align: left; }
.S3 { margin: 10px 0px 20px; padding-left: 0px; font-family: Helvetica, Arial, sans-serif; font-size: 14px; }
.S4 { margin-left: 56px; line-height: 21px; min-height: 0px; text-align: left; white-space: pre-wrap; }
.CodeBlock { background-color: #F7F7F7; margin: 10px 0 10px 0;}
.S5 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 4px 4px 0px 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S6 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 0px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S7 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px 0px 4px 4px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S8 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 0px none rgb(0, 0, 0); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 0px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S9 { color: rgb(64, 64, 64); padding: 10px 0px 6px 17px; background: rgb(255, 255, 255) none repeat scroll 0% 0% / auto padding-box border-box; font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; overflow-x: hidden; line-height: 17.234px; }
.S10 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 1px solid rgb(233, 233, 233); border-radius: 0px; padding: 6px 45px 4px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S11 { border-left: 1px solid rgb(233, 233, 233); border-right: 1px solid rgb(233, 233, 233); border-top: 1px solid rgb(233, 233, 233); border-bottom: 0px none rgb(0, 0, 0); border-radius: 0px; padding: 6px 45px 0px 13px; line-height: 17.234px; min-height: 18px; white-space: nowrap; color: rgb(0, 0, 0); font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 14px; }
.S12 { margin: 10px 10px 9px 4px; padding: 0px; line-height: 21px; min-height: 0px; white-space: pre-wrap; color: rgb(0, 0, 0); font-family: Helvetica, Arial, sans-serif; font-style: normal; font-size: 14px; font-weight: 400; text-align: left; }
.embeddedOutputsErrorElement {min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsErrorElement.inlineElement {}
.embeddedOutputsErrorElement.rightPaneElement {}
.embeddedOutputsWarningElement{min-height: 18px; max-height: 250px; overflow: auto;}
.embeddedOutputsWarningElement.inlineElement {}
.embeddedOutputsWarningElement.rightPaneElement {}
.diagnosticMessage-wrapper {font-family: Menlo, Monaco, Consolas, "Courier New", monospace; font-size: 12px;}
.diagnosticMessage-wrapper.diagnosticMessage-warningType {color: rgb(255,100,0);}
.diagnosticMessage-wrapper.diagnosticMessage-warningType a {color: rgb(255,100,0); text-decoration: underline;}
.diagnosticMessage-wrapper.diagnosticMessage-errorType {color: rgb(230,0,0);}
.diagnosticMessage-wrapper.diagnosticMessage-errorType a {color: rgb(230,0,0); text-decoration: underline;}
.diagnosticMessage-wrapper .diagnosticMessage-messagePart,.diagnosticMessage-wrapper .diagnosticMessage-causePart {white-space: pre-wrap;}
.diagnosticMessage-wrapper .diagnosticMessage-stackPart {white-space: pre;}
.embeddedOutputsTextElement,.embeddedOutputsVariableStringElement {white-space: pre; word-wrap: initial; min-height: 18px; max-height: 250px; overflow: auto;}
.textElement,.rtcDataTipElement .textElement {padding-top: 3px;}
.embeddedOutputsTextElement.inlineElement,.embeddedOutputsVariableStringElement.inlineElement {}
.inlineElement .textElement {}
.embeddedOutputsTextElement.rightPaneElement,.embeddedOutputsVariableStringElement.rightPaneElement {min-height: 16px;}
.rightPaneElement .textElement {padding-top: 2px; padding-left: 9px;}</style></head><body><div class = rtcContent><h1 class = 'S0'><span>Equilibrium Interest Rate and Wage Rate</span></h1><div class = 'S1'><span style=' font-weight: bold;'>back to </span><a href = "https://fanwangecon.github.io"><span style=' font-weight: bold;'>Fan</span></a><span style=' font-weight: bold;'>'s </span><a href = "https://fanwangecon.github.io/Math4Econ/"><span style=' font-weight: bold;'>Intro Math for Econ</span></a><span style=' font-weight: bold;'>, </span><a href = "https://fanwangecon.github.io/M4Econ/"><span style=' font-weight: bold;'>Matlab Examples</span></a><span style=' font-weight: bold;'>, or </span><a href = "https://fanwangecon.github.io/MEconTools/"><span style=' font-weight: bold;'>MEconTools</span></a><span style=' font-weight: bold;'> Repositories</span></div><div class = 'S1'><span>We have solved for the problem with </span><a href = "https://fanwangecon.github.io/Math4Econ/optimization_application/household_asset_labor_constrained.html"><span>constrained labor and saving/borrowing choice</span></a><span>, and the problem with </span><a href = "https://fanwangecon.github.io/Math4Econ/equilibrium/equilibrium_constrainedborrow.html"><span>saving/borrowing and tax</span></a><span>. </span></div><h2 class = 'S2'><span>Household and Firm's Problem</span></h2><div class = 'S1'><span>Following our previous </span><a href = "https://fanwangecon.github.io/Math4Econ/optimization_application/household_asset_labor_constrained.html"><span>discussions</span></a><span>, the household's borrowing constrained problem is: </span></div><ul class = 'S3'><li class = 'S4'><span>specifically: </span><span texencoding="\max_{b, \text{work}, \text{leisure}} \log(Z_1 + w\cdot \text{work}-b) + \psi \log(\text{leisure}) + \beta \cdot \log(Z_2 + b\cdot (1+r))" style="vertical-align:-15px"><img src="" width="460.5" height="29" /></span></li></ul><div class = 'S1'><span>And the constraints are:</span></div><ol class = 'S3'><li class = 'S4'><span texencoding="b\ge \bar{b}" style="vertical-align:-5px"><img src="" width="36.5" height="20" /></span></li><li class = 'S4'><span texencoding="\text{work} \ge 0" style="vertical-align:-5px"><img src="" width="59.5" height="18" /></span></li><li class = 'S4'><span texencoding="\text{leisure}\ge 0" style="vertical-align:-5px"><img src="" width="69" height="18" /></span></li><li class = 'S4'><span texencoding="\text{work} + \text{leisure} \le T" style="vertical-align:-5px"><img src="" width="118.5" height="18" /></span><span>, where </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">T</span><span> is total time available</span></li></ol><div class = 'S1'><span>There are </span><span texencoding="N=3" style="vertical-align:-5px"><img src="" width="41.5" height="18" /></span><span> households, each with a different </span><span texencoding="\beta_i" style="vertical-align:-6px"><img src="" width="13.5" height="20" /></span><span>.</span></div><div class = 'S1'><span>For the firm, we have </span><a href = "https://fanwangecon.github.io/Math4Econ/matrix_application/KL_borrowhire_firm.html"><span>solved previously</span></a><span> for the firm's optimal choices given </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">w</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">r</span><span>:</span></div><ul class = 'S3'><li class = 'S4'><span texencoding="\max_{K, L} \left( p\cdot A\cdot K^{\alpha}\cdot L^{\beta}-r\cdot K-w\cdot L \right)" style="vertical-align:-15px"><img src="" width="222" height="30" /></span></li></ul><h2 class = 'S2'><span>Setting Up Parameters</span></h2><div class = 'S1'><span>Solve with three different discount rates, and different </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">r</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">w</span><span>. First, let's set up some parameters. The firm here has decreasing return to scale, let's ignore the issue of profit when looking for equilibrium.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>clear </span><span class="warning_squiggle_rte1865859824" style="color: rgb(170, 4, 249);">all</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Parameters for the Household</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>psi = 0.5;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>z1 = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>z2 = 2;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>b_bar_num = -1; </span><span style="color: rgb(2, 128, 9);">% borrow up to 1 dollar</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>T = 1; </span><span style="color: rgb(2, 128, 9);">% think about time as share of time in a year</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Parameters for the firm</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>p = 1;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>alpha = 0.3;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>beta = 0.5;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>Aproductivity = 2.0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Vector of 3 betas</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>beta_vec = [0.85 0.90 0.95];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Vector of interest rates</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>R_vec = linspace(0.60, 2.50, 30);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Vector of wage rates, 3 wage rates for now</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>W_vec = linspace(0.6, 2, 15);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% What we had from before to use fmincon</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>A = [-1,0,0;0,0,-1;0,-1,0;0,1,1];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>q = [-b_bar_num;0;0;T];</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre;"><span>b0 = [0,0.5,0.5]; </span><span style="color: rgb(2, 128, 9);">% starting value to search for optimal choice</span></span></div></div></div><h2 class = 'S2'><span>Household Labor Supply and Borrow/Save with different </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(60, 60, 60);">β</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(60, 60, 60);">r</span><span> ?</span></h2><div class = 'S1'><a href = "https://fanwangecon.github.io/Math4Econ/equilibrium/equilibrium_constrainedborrow.html"><span>In the problem without labor supply</span></a><span> I showed different excess supply of credit for each </span><span texencoding="\beta_i" style="vertical-align:-6px"><img src="" width="13.5" height="20" /></span><span> household, we can do the same here for excess credit supply, but that is too much to show. I will just sum up the total across the households for both excress credit supply and total work hours:</span></div><ul class = 'S3'><li class = 'S4'><span style=' font-weight: bold;'>Aggregate Household Excess Supply</span><span>: </span><span texencoding="B^*_{hh}(r,w) = \sum_{i=1}^3 b^*(r, w, \beta_i)" style="vertical-align:-8px"><img src="" width="173" height="27" /></span></li><li class = 'S4'><span style=' font-weight: bold;'>Aggregate Household Labor Supply</span><span>: </span><span texencoding="\text{WORK}^*_{hh}(r,w) = \sum_{i=1}^3 \text{work}^*(r, w, \beta_i)" style="vertical-align:-8px"><img src="" width="231" height="27" /></span></li></ul><div class = 'S1'><span>I store results in a matrix where each row correspond to an interest rate level and each color a wage rate. </span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Various Matrixes to store optimal choices</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>rows = length(R_vec);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>cols = length(W_vec);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>wage_dim_len = length(W_vec);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>b_opti_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>worKOpti_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>leisure_opti_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>c1_opti_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>c2_opti_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Solving for optimal choices as we change Z2</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>i=1:1:length(R_vec)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">for </span><span>j=1:1:length(W_vec)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% Initialize aggregate household statistics given r and w</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_b_supply_at_w_r = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_work_at_w_r = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_leisure_at_w_r = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_c1_at_w_r = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_c2_at_w_r = 0;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">for </span><span>h=1:1:length(beta_vec)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% Solve</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> U_neg = @(x) -1*(log(z1 + W_vec(j)*x(2) - x(1)) + psi*log(x(3)) + beta_vec(h)*log(z2 + x(1)*(R_vec(i))));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> options = optimoptions(</span><span style="color: rgb(170, 4, 249);">'FMINCON'</span><span>,</span><span style="color: rgb(170, 4, 249);">'Display'</span><span>,</span><span style="color: rgb(170, 4, 249);">'off'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> [x_opti,U_at_x_opti] = fmincon(U_neg, b0, A, q, [], [], [], [], [], options);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% Sum up at current r and w for all households</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_b_supply_at_w_r = agg_b_supply_at_w_r + x_opti(1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_work_at_w_r = agg_work_at_w_r + x_opti(2);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_leisure_at_w_r = agg_leisure_at_w_r + x_opti(3);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_c1_at_w_r = agg_c1_at_w_r + z1 + W_vec(j)*x_opti(2) - x_opti(1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> agg_c2_at_w_r = agg_c2_at_w_r + z2 + x_opti(1)*(R_vec(i));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(2, 128, 9);">% Store aggregate Household statistics</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> b_opti_mat(i, j) = agg_b_supply_at_w_r;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> worKOpti_mat(i, j) = agg_work_at_w_r;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> leisure_opti_mat(i, j) = agg_leisure_at_w_r;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> c1_opti_mat(i, j) = agg_c1_at_w_r;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> c2_opti_mat(i, j) = agg_c2_at_w_r;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h2 class = 'S2'><span>Firm's Demand for Capital and Labor</span></h2><div class = 'S1'><span>The firm's problem loops over </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">r</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">w</span><span>, do not need to loop over </span><span texencoding="\beta_i" style="vertical-align:-6px"><img src="" width="13.5" height="20" /></span><span>. We get here:</span></div><ul class = 'S3'><li class = 'S4'><span style=' font-weight: bold;'>Firm Demand For Capital</span><span>: </span><span texencoding="K^*_{firm}(r,w)" style="vertical-align:-8px"><img src="" width="68" height="22" /></span></li><li class = 'S4'><span style=' font-weight: bold;'>Firm Demand For Labor</span><span>: </span><span texencoding="L^*_{firm}(r,w)" style="vertical-align:-8px"><img src="" width="66" height="22" /></span></li></ul><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Various Matrixes to store optimal choices</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>rows = length(R_vec);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>cols = length(W_vec);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>K_demand_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>L_demand_mat = zeros(rows, cols);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% We solved before optimal choices</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>syms </span><span style="color: rgb(170, 4, 249);">w r</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Matrix Form of linear system, same as before</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>B = [log(r/(p*Aproductivity*alpha)); log(w/(p*Aproductivity*beta))];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>A = [(alpha-1), beta;alpha, beta-1];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Solve linear equations, and then exponentiate, same as before</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% We can use the simplify command to simplify this solution, get rid of exp and log:</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>lin_solu = simplify(exp(linsolve(A, B)));</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>KOpti = lin_solu(1)</span></span></div><div class = 'S9'><div class="symbolicElement"><div class="embeddedOutputsVariableElement">KOpti = </div><span class="MathEquation" mathmmlencoding="&lt;math xmlns='http://www.w3.org/1998/Math/MathML' display='block' xmlns:mw='https://www.mathworks.com/MathML/extensions'&gt;
&lt;mfrac mw:template='divide' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='times' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;9&lt;/mn&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msqrt mw:template='sqrt' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;15&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/msqrt&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='times' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;125&lt;/mn&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msup mw:template='power' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mi&gt;r&lt;/mi&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='divideLinear' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;5&lt;/mn&gt;
&lt;mo mw:dataCategory='static'&gt;/&lt;/mo&gt;
&lt;mn&gt;2&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/msup&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msup mw:template='power' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mi&gt;w&lt;/mi&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='divideLinear' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;5&lt;/mn&gt;
&lt;mo mw:dataCategory='static'&gt;/&lt;/mo&gt;
&lt;mn&gt;2&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/msup&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mfrac&gt;
&lt;/math&gt;
" style="vertical-align: -16px;"><img src="" width="78" height="38"></span></div></div></div><div class="inlineWrapper outputs"><div class = 'S10'><span style="white-space: pre;"><span>LOpti = lin_solu(2)</span></span></div><div class = 'S9'><div class="symbolicElement"><div class="embeddedOutputsVariableElement">LOpti = </div><span class="MathEquation" mathmmlencoding="&lt;math xmlns='http://www.w3.org/1998/Math/MathML' display='block' xmlns:mw='https://www.mathworks.com/MathML/extensions'&gt;
&lt;mfrac mw:template='divide' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='times' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;3&lt;/mn&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msqrt mw:template='sqrt' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;15&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/msqrt&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='times' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;25&lt;/mn&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msup mw:template='power' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mi&gt;r&lt;/mi&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='divideLinear' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;3&lt;/mn&gt;
&lt;mo mw:dataCategory='static'&gt;/&lt;/mo&gt;
&lt;mn&gt;2&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/msup&gt;
&lt;mo form='infix' mw:dataCategory='static'&gt;&amp;InvisibleTimes;&lt;/mo&gt;
&lt;msup mw:template='power' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mi&gt;w&lt;/mi&gt;
&lt;/mrow&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mrow mw:template='divideLinear' mw:dataCategory='structure'&gt;
&lt;mrow mw:dataCategory='placeholder'&gt;
&lt;mn&gt;7&lt;/mn&gt;
&lt;mo mw:dataCategory='static'&gt;/&lt;/mo&gt;
&lt;mn&gt;2&lt;/mn&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/msup&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mrow&gt;
&lt;/mfrac&gt;
&lt;/math&gt;
" style="vertical-align: -16px;"><img src="" width="70.5" height="38"></span></div></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Solving for optimal choices as we change Z2</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>i=1:1:length(R_vec)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">for </span><span>j=1:1:length(W_vec)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> K_demand_mat(i,j) = subs(KOpti,{r,w},{R_vec(i), W_vec(j)});</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> L_demand_mat(i,j) = subs(LOpti,{r,w},{R_vec(i), W_vec(j)});</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> </span><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div></div><h2 class = 'S2'><span>Demand and Supply for Capital</span></h2><div class = 'S1'><span>We can graph out from the firm and household problem demand and supply for capital</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure();</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Household b (some borrow some save added up)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, b_opti_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>plot(R_vec,ones(size(R_vec)) * 0, </span><span style="color: rgb(170, 4, 249);">'k-.'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylim([-4, 2]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'Household Net B Supply'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel({</span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'Aggregate Household Net Saving Borrowing'</span><span>], </span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'(over 3 household \beta types)'</span><span>]})</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Firm's Graph</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,2)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, -K_demand_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>plot(R_vec,ones(size(R_vec)) * 0, </span><span style="color: rgb(170, 4, 249);">'k-.'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylim([-4, 2]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'-1*(Firm K Demand)'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel(</span><span style="color: rgb(170, 4, 249);">'Firm Demand for Capital (Decreasing Return to Scale)'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legend2plot = [1 round(numel(chart)/2) numel(chart)];</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legendCell = cellstr(num2str(W_vec', </span><span style="color: rgb(170, 4, 249);">'wage=%3.2f'</span><span>));</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>legend(chart(legend2plot), legendCell(legend2plot), </span><span style="color: rgb(170, 4, 249);">'Location'</span><span>,</span><span style="color: rgb(170, 4, 249);">'southeast'</span><span>);</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="77DB4FEA" data-testid="output_2" style="width: 1150px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><h2 class = 'S2'><span>Demand and Supply for Labor Demand and Supply</span></h2><div class = 'S1'><span>We now generate the same graphs for Labor</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure();</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Household b (some borrow some save added up)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, worKOpti_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylim([0,6]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'Household Work Supply'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel({</span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'Aggregate Household Work Hours'</span><span>], </span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'(over 3 household \beta types)'</span><span>]})</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Firm's Graph</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,2)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, L_demand_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylim([0,6]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'Firm L Demand'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel(</span><span style="color: rgb(170, 4, 249);">'Firm Demand for Labor (Decreasing Return to Scale)'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legendCell = cellstr(num2str(W_vec', </span><span style="color: rgb(170, 4, 249);">'wage=%3.2f'</span><span>));</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>legend(legendCell, </span><span style="color: rgb(170, 4, 249);">'Location'</span><span>,</span><span style="color: rgb(170, 4, 249);">'northeast'</span><span>);</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="BD9D674B" data-testid="output_3" style="width: 1150px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><h2 class = 'S2'><span>Excess Demand for Capital and Labor</span></h2><div class = 'S1'><span>We can sum up the firm and household sides to try to find the </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">r</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(0, 0, 0);">w</span><span> where demand and supply are equalized.</span></div><ul class = 'S3'><li class = 'S4'><span style=' font-weight: bold;'>Economy-wide excess supply of Credit</span><span>: </span><span texencoding="\text{ExcesCreditSupply}(r,w) = B^*_{hh}(r,w) - K^*_{firm}(r,w)" style="vertical-align:-8px"><img src="" width="307.5" height="22" /></span></li><li class = 'S4'><span style=' font-weight: bold;'>Economy-wide excess supply of Credit</span><span>: </span><span texencoding="\text{ExcesLaborSupply}(r,w) = \text{WORK}^*_{hh}(r, w) - L^*_{firm}(r,w)" style="vertical-align:-8px"><img src="" width="339.5" height="22" /></span></li></ul><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure();</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Household and Firm Excess Credit Supply, aggregated together</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, b_opti_mat-K_demand_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>plot(R_vec,ones(size(R_vec)) * 0, </span><span style="color: rgb(170, 4, 249);">'k-.'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'HH + Firm Excess Credit Supply'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel({</span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'Economy Wide Excess Supply for Credit'</span><span>], </span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'(over 3 household \beta types + Firm)'</span><span>]})</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Firm's Graph</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,2);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>hold </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, worKOpti_mat - L_demand_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>plot(R_vec,ones(size(R_vec)) * 0, </span><span style="color: rgb(170, 4, 249);">'k-.'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'HH + Firm Excess Labor Supply'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel({</span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'Economy Wide Excess Supply for Labor'</span><span>], </span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'(over 3 household \beta types + Firm)'</span><span>]})</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legendCell = cellstr(num2str(W_vec', </span><span style="color: rgb(170, 4, 249);">'wage=%3.2f'</span><span>));</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>legend(legendCell, </span><span style="color: rgb(170, 4, 249);">'Location'</span><span>,</span><span style="color: rgb(170, 4, 249);">'southeast'</span><span>);</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="F66F39FF" data-testid="output_4" style="width: 1150px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div><h2 class = 'S2'><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(60, 60, 60);">w</span><span> and </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: italic; font-weight: 400; color: rgb(60, 60, 60);">r</span><span> Equilibrium</span></h2><div class = 'S1'><span>Now let's do a final sum we want to find where both aggregate labor and capital clear.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>figure();</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Aggregate Excess Supplies</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>excess_credit_supply = abs(b_opti_mat - K_demand_mat);</span></span></div></div><div class="inlineWrapper"><div class = 'S7'><span style="white-space: pre;"><span>excess_labor_supply = abs(worKOpti_mat - L_demand_mat);</span></span></div></div></div><div class = 'S12'><span>We need to take the absolute values of the two differences above and sum them up. The equilibrium is approximately where the sum of the two matrixes is the closest to </span><span style="font-family: STIXGeneral, STIXGeneral-webfont, serif; font-style: normal; font-weight: 400; color: rgb(0, 0, 0);">0</span><span>.</span></div><div class="CodeBlock"><div class="inlineWrapper"><div class = 'S5'><span style="white-space: pre;"><span>DS_KL_DIFF = excess_credit_supply + excess_labor_supply;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>[DS_KL_diff_EQUI_val, EQUI_IDX] = min(min(DS_KL_DIFF));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>[r_idx, w_idx]=find(DS_KL_DIFF==DS_KL_diff_EQUI_val);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>equi_r = R_vec(r_idx);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>equi_w = W_vec(w_idx);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>equi_price = table(equi_r, equi_w);</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>disp(equi_price);</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsTextElement" uid="4F26D5FA" data-testid="output_5" data-width="1120" data-height="59" data-hashorizontaloverflow="false" style="width: 1150px; max-height: 261px;"><div class="textElement"> <strong>equi_r</strong> <strong>equi_w</strong>
<strong>______</strong> <strong>______</strong>
2.0414 0.7 </div></div></div></div><div class="inlineWrapper"><div class = 'S11'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Both should be zero (if the scale of L and K are very different this would not work well)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% We can sum up the two and look for r and w closest to zero</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,1);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>chart = plot(R_vec, DS_KL_DIFF);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Show smoother colors</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>clr = jet(numel(chart));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">for </span><span>m = 1:numel(chart)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span> set(chart(m),</span><span style="color: rgb(170, 4, 249);">'Color'</span><span>,clr(m,:))</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(14, 0, 255);">end</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlim([min(R_vec) max(R_vec)]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>grid </span><span style="color: rgb(170, 4, 249);">on</span><span>;</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'abs(Excess K) + abs(Excess L)'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel({</span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'Economy Wide Excess Supply for Credit'</span><span>], </span><span class="warning_squiggle_rte1865859824">[</span><span style="color: rgb(170, 4, 249);">'(over 3 household \beta types + Firm)'</span><span>]})</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legendCell = cellstr(num2str(W_vec', </span><span style="color: rgb(170, 4, 249);">'wage=%3.2f'</span><span>));</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>legend(legendCell, </span><span style="color: rgb(170, 4, 249);">'Location'</span><span>,</span><span style="color: rgb(170, 4, 249);">'northeast'</span><span>);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span style="color: rgb(2, 128, 9);">% Firm's Graph</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>subplot(1,2,2)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>mesh(R_vec, W_vec, DS_KL_DIFF');</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>view([30.1 3.6]);</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>title(</span><span style="color: rgb(170, 4, 249);">'abs(Excess K) + abs(Excess L)'</span><span>)</span></span></div></div><div class="inlineWrapper"><div class = 'S6'><span style="white-space: pre;"><span>ylabel(</span><span style="color: rgb(170, 4, 249);">'wage'</span><span>)</span></span></div></div><div class="inlineWrapper outputs"><div class = 'S8'><span style="white-space: pre;"><span>xlabel(</span><span style="color: rgb(170, 4, 249);">'1+r'</span><span>)</span></span></div><div class = 'S9'><div class="inlineElement eoOutputWrapper embeddedOutputsFigure" uid="2C02472D" data-testid="output_6" style="width: 1150px;"><div class="figureElement"><img class="figureImage figureContainingNode" src="" style="width: 560px;"></div></div></div></div></div></div>
<br>
<!--
##### SOURCE BEGIN #####
%% Equilibrium Interest Rate and Wage Rate
% *back to* <https://fanwangecon.github.io *Fan*>*'s* <https://fanwangecon.github.io/Math4Econ/
% *Intro Math for Econ*>*,* <https://fanwangecon.github.io/M4Econ/ *Matlab Examples*>*,
% or* <https://fanwangecon.github.io/MEconTools/ *MEconTools*> *Repositories*
%%
% We have solved for the problem with <https://fanwangecon.github.io/Math4Econ/optimization_application/household_asset_labor_constrained.html
% constrained labor and saving/borrowing choice>, and the problem with <https://fanwangecon.github.io/Math4Econ/equilibrium/equilibrium_constrainedborrow.html
% saving/borrowing and tax>.
%% Household and Firm's Problem
% Following our previous <https://fanwangecon.github.io/Math4Econ/optimization_application/household_asset_labor_constrained.html
% discussions>, the household's borrowing constrained problem is:
%%
% * specifically: $\max_{b, \text{work}, \text{leisure}} \log(Z_1 + w\cdot \text{work}-b)
% + \psi \log(\text{leisure}) + \beta \cdot \log(Z_2 + b\cdot (1+r))$
%%
% And the constraints are:
%%
% # $b\ge \bar{b}$
% # $\text{work} \ge 0$
% # $\text{leisure}\ge 0$
% # $\text{work} + \text{leisure} \le T$, where $T$ is total time available
%%
% There are $N=3$ households, each with a different $\beta_i$.
%
% For the firm, we have <https://fanwangecon.github.io/Math4Econ/matrix_application/KL_borrowhire_firm.html
% solved previously> for the firm's optimal choices given $w$ and $r$:
%%
% * $\max_{K, L} \left( p\cdot A\cdot K^{\alpha}\cdot L^{\beta}-r\cdot K-w\cdot
% L \right)$
%% Setting Up Parameters
% Solve with three different discount rates, and different $r$ and $w$. First,
% let's set up some parameters. The firm here has decreasing return to scale,
% let's ignore the issue of profit when looking for equilibrium.
clear all
% Parameters for the Household
psi = 0.5;
z1 = 1;
z2 = 2;
b_bar_num = -1; % borrow up to 1 dollar
T = 1; % think about time as share of time in a year
% Parameters for the firm
p = 1;
alpha = 0.3;
beta = 0.5;
Aproductivity = 2.0;
% Vector of 3 betas
beta_vec = [0.85 0.90 0.95];
% Vector of interest rates
R_vec = linspace(0.60, 2.50, 30);
% Vector of wage rates, 3 wage rates for now
W_vec = linspace(0.6, 2, 15);
% What we had from before to use fmincon
A = [-1,0,0;0,0,-1;0,-1,0;0,1,1];
q = [-b_bar_num;0;0;T];
b0 = [0,0.5,0.5]; % starting value to search for optimal choice
%% Household Labor Supply and Borrow/Save with different $\beta$ and $r$ ?
% <https://fanwangecon.github.io/Math4Econ/equilibrium/equilibrium_constrainedborrow.html
% In the problem without labor supply> I showed different excess supply of credit
% for each $\beta_i$ household, we can do the same here for excess credit supply,
% but that is too much to show. I will just sum up the total across the households
% for both excress credit supply and total work hours:
%%
% * *Aggregate Household Excess Supply*: $B^*_{hh}(r,w) = \sum_{i=1}^3 b^*(r,
% w, \beta_i)$
% * *Aggregate Household Labor Supply*: $\text{WORK}^*_{hh}(r,w) = \sum_{i=1}^3
% \text{work}^*(r, w, \beta_i)$
%%
% I store results in a matrix where each row correspond to an interest rate
% level and each color a wage rate.
% Various Matrixes to store optimal choices
rows = length(R_vec);
cols = length(W_vec);
wage_dim_len = length(W_vec);
b_opti_mat = zeros(rows, cols);
worKOpti_mat = zeros(rows, cols);
leisure_opti_mat = zeros(rows, cols);
c1_opti_mat = zeros(rows, cols);
c2_opti_mat = zeros(rows, cols);
% Solving for optimal choices as we change Z2
for i=1:1:length(R_vec)
for j=1:1:length(W_vec)
% Initialize aggregate household statistics given r and w
agg_b_supply_at_w_r = 0;
agg_work_at_w_r = 0;
agg_leisure_at_w_r = 0;
agg_c1_at_w_r = 0;
agg_c2_at_w_r = 0;
for h=1:1:length(beta_vec)
% Solve
U_neg = @(x) -1*(log(z1 + W_vec(j)*x(2) - x(1)) + psi*log(x(3)) + beta_vec(h)*log(z2 + x(1)*(R_vec(i))));
options = optimoptions('FMINCON','Display','off');
[x_opti,U_at_x_opti] = fmincon(U_neg, b0, A, q, [], [], [], [], [], options);
% Sum up at current r and w for all households
agg_b_supply_at_w_r = agg_b_supply_at_w_r + x_opti(1);
agg_work_at_w_r = agg_work_at_w_r + x_opti(2);
agg_leisure_at_w_r = agg_leisure_at_w_r + x_opti(3);
agg_c1_at_w_r = agg_c1_at_w_r + z1 + W_vec(j)*x_opti(2) - x_opti(1);
agg_c2_at_w_r = agg_c2_at_w_r + z2 + x_opti(1)*(R_vec(i));
end
% Store aggregate Household statistics
b_opti_mat(i, j) = agg_b_supply_at_w_r;
worKOpti_mat(i, j) = agg_work_at_w_r;
leisure_opti_mat(i, j) = agg_leisure_at_w_r;
c1_opti_mat(i, j) = agg_c1_at_w_r;
c2_opti_mat(i, j) = agg_c2_at_w_r;
end
end
%% Firm's Demand for Capital and Labor
% The firm's problem loops over $r$ and $w$, do not need to loop over $\beta_i$.
% We get here:
%%
% * *Firm Demand For Capital*: $K^*_{firm}(r,w)$
% * *Firm Demand For Labor*: $L^*_{firm}(r,w)$
% Various Matrixes to store optimal choices
rows = length(R_vec);
cols = length(W_vec);
K_demand_mat = zeros(rows, cols);
L_demand_mat = zeros(rows, cols);
% We solved before optimal choices
syms w r
% Matrix Form of linear system, same as before
B = [log(r/(p*Aproductivity*alpha)); log(w/(p*Aproductivity*beta))];
A = [(alpha-1), beta;alpha, beta-1];
% Solve linear equations, and then exponentiate, same as before
% We can use the simplify command to simplify this solution, get rid of exp and log:
lin_solu = simplify(exp(linsolve(A, B)));
KOpti = lin_solu(1)
LOpti = lin_solu(2)
% Solving for optimal choices as we change Z2
for i=1:1:length(R_vec)
for j=1:1:length(W_vec)
K_demand_mat(i,j) = subs(KOpti,{r,w},{R_vec(i), W_vec(j)});
L_demand_mat(i,j) = subs(LOpti,{r,w},{R_vec(i), W_vec(j)});
end
end
%% Demand and Supply for Capital
% We can graph out from the firm and household problem demand and supply for
% capital
figure();
% Household b (some borrow some save added up)
subplot(1,2,1);
hold on;
chart = plot(R_vec, b_opti_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
plot(R_vec,ones(size(R_vec)) * 0, 'k-.');
xlim([min(R_vec) max(R_vec)]);
ylim([-4, 2]);
grid on;
title('Household Net B Supply')
ylabel({['Aggregate Household Net Saving Borrowing'], ['(over 3 household \beta types)']})
xlabel('1+r')
% Firm's Graph
subplot(1,2,2)
hold on;
chart = plot(R_vec, -K_demand_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
plot(R_vec,ones(size(R_vec)) * 0, 'k-.');
xlim([min(R_vec) max(R_vec)]);
ylim([-4, 2]);
grid on;
title('-1*(Firm K Demand)')
ylabel('Firm Demand for Capital (Decreasing Return to Scale)')
xlabel('1+r')
legend2plot = [1 round(numel(chart)/2) numel(chart)];
legendCell = cellstr(num2str(W_vec', 'wage=%3.2f'));
legend(chart(legend2plot), legendCell(legend2plot), 'Location','southeast');
%% Demand and Supply for Labor Demand and Supply
% We now generate the same graphs for Labor
figure();
% Household b (some borrow some save added up)
subplot(1,2,1);
chart = plot(R_vec, worKOpti_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
xlim([min(R_vec) max(R_vec)]);
ylim([0,6]);
grid on;
title('Household Work Supply')
ylabel({['Aggregate Household Work Hours'], ['(over 3 household \beta types)']})
xlabel('1+r')
% Firm's Graph
subplot(1,2,2)
chart = plot(R_vec, L_demand_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
xlim([min(R_vec) max(R_vec)]);
ylim([0,6]);
grid on;
title('Firm L Demand')
ylabel('Firm Demand for Labor (Decreasing Return to Scale)')
xlabel('1+r')
legendCell = cellstr(num2str(W_vec', 'wage=%3.2f'));
legend(legendCell, 'Location','northeast');
%% Excess Demand for Capital and Labor
% We can sum up the firm and household sides to try to find the $r$ and $w$
% where demand and supply are equalized.
%%
% * *Economy-wide excess supply of Credit*: $\text{ExcesCreditSupply}(r,w) =
% B^*_{hh}(r,w) - K^*_{firm}(r,w)$
% * *Economy-wide excess supply of Credit*: $\text{ExcesLaborSupply}(r,w) =
% \text{WORK}^*_{hh}(r, w) - L^*_{firm}(r,w)$
figure();
% Household and Firm Excess Credit Supply, aggregated together
subplot(1,2,1);
hold on;
chart = plot(R_vec, b_opti_mat-K_demand_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
plot(R_vec,ones(size(R_vec)) * 0, 'k-.');
xlim([min(R_vec) max(R_vec)]);
grid on;
title('HH + Firm Excess Credit Supply')
ylabel({['Economy Wide Excess Supply for Credit'], ['(over 3 household \beta types + Firm)']})
xlabel('1+r')
% Firm's Graph
subplot(1,2,2);
hold on;
chart = plot(R_vec, worKOpti_mat - L_demand_mat);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
plot(R_vec,ones(size(R_vec)) * 0, 'k-.');
xlim([min(R_vec) max(R_vec)]);
grid on;
title('HH + Firm Excess Labor Supply')
ylabel({['Economy Wide Excess Supply for Labor'], ['(over 3 household \beta types + Firm)']})
xlabel('1+r')
legendCell = cellstr(num2str(W_vec', 'wage=%3.2f'));
legend(legendCell, 'Location','southeast');
%% $w$ and $r$ Equilibrium
% Now let's do a final sum we want to find where both aggregate labor and capital
% clear.
figure();
% Aggregate Excess Supplies
excess_credit_supply = abs(b_opti_mat - K_demand_mat);
excess_labor_supply = abs(worKOpti_mat - L_demand_mat);
%%
% We need to take the absolute values of the two differences above and sum them
% up. The equilibrium is approximately where the sum of the two matrixes is the
% closest to $0$.
DS_KL_DIFF = excess_credit_supply + excess_labor_supply;
[DS_KL_diff_EQUI_val, EQUI_IDX] = min(min(DS_KL_DIFF));
[r_idx, w_idx]=find(DS_KL_DIFF==DS_KL_diff_EQUI_val);
equi_r = R_vec(r_idx);
equi_w = W_vec(w_idx);
equi_price = table(equi_r, equi_w);
disp(equi_price);
% Both should be zero (if the scale of L and K are very different this would not work well)
% We can sum up the two and look for r and w closest to zero
subplot(1,2,1);
chart = plot(R_vec, DS_KL_DIFF);
% Show smoother colors
clr = jet(numel(chart));
for m = 1:numel(chart)
set(chart(m),'Color',clr(m,:))
end
xlim([min(R_vec) max(R_vec)]);
grid on;
title('abs(Excess K) + abs(Excess L)')
ylabel({['Economy Wide Excess Supply for Credit'], ['(over 3 household \beta types + Firm)']})
xlabel('1+r')
legendCell = cellstr(num2str(W_vec', 'wage=%3.2f'));
legend(legendCell, 'Location','northeast');
% Firm's Graph
subplot(1,2,2)
mesh(R_vec, W_vec, DS_KL_DIFF');
view([30.1 3.6]);
title('abs(Excess K) + abs(Excess L)')
ylabel('wage')
xlabel('1+r')
##### SOURCE END #####
--></body></html>