-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathevaluate_motion_vae.py
137 lines (118 loc) · 5.93 KB
/
evaluate_motion_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import models.motion_vae as vae_models
from trainer.vae_trainer import *
from utils.plot_script import *
import utils.paramUtil as paramUtil
from utils.utils_ import *
from options.evaluate_vae_options import *
from dataProcessing import dataset
from torch.utils.data import DataLoader
if __name__ == "__main__":
parser = TestOptions()
opt = parser.parse()
joints_num = 0
input_size = 72
data = None
label_dec = None
dim_category = 31
enumerator = None
device = torch.device("cuda:" + str(opt.gpu_id) if opt.gpu_id else "cpu")
opt.save_root = os.path.join(opt.checkpoints_dir, opt.dataset_type, opt.name)
opt.model_path = os.path.join(opt.save_root, 'model')
opt.joints_path = os.path.join(opt.save_root, 'joints')
model_file_path = os.path.join(opt.model_path, opt.which_epoch + '.tar')
result_path = os.path.join(opt.result_path, opt.dataset_type, opt.name + opt.name_ext)
if opt.dataset_type == "humanact12":
dataset_path = "./dataset/humanact12"
input_size = 72
joints_num = 24
label_dec = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
raw_offsets = paramUtil.humanact12_raw_offsets
kinematic_chain = paramUtil.humanact12_kinematic_chain
enumerator = paramUtil.humanact12_coarse_action_enumerator
elif opt.dataset_type == "mocap":
dataset_path = "./dataset/mocap/mocap_3djoints/"
clip_path = './dataset/mocap/pose_clip.csv'
input_size = 60
joints_num = 20
raw_offsets = paramUtil.mocap_raw_offsets
kinematic_chain = paramUtil.mocap_kinematic_chain
label_dec = [0, 1, 2, 3, 4, 5, 6, 7]
enumerator = paramUtil.mocap_action_enumerator
elif opt.dataset_type == "ntu_rgbd_vibe":
file_prefix = "./dataset"
motion_desc_file = "ntu_vibe_list.txt"
joints_num = 18
input_size = 54
label_dec = [6, 7, 8, 9, 22, 23, 24, 38, 80, 93, 99, 100, 102]
labels = paramUtil.ntu_action_labels
enumerator = paramUtil.ntu_action_enumerator
raw_offsets = paramUtil.vibe_raw_offsets
kinematic_chain = paramUtil.vibe_kinematic_chain
else:
raise NotImplementedError('This dataset is unregonized!!!')
opt.dim_category = len(label_dec)
opt.pose_dim = input_size
if opt.time_counter:
opt.input_size = input_size + opt.dim_category + 1
else:
opt.input_size = input_size + opt.dim_category
opt.output_size = input_size
model = torch.load(model_file_path)
prior_net = vae_models.GaussianGRU(opt.input_size, opt.dim_z, opt.hidden_size,
opt.prior_hidden_layers, opt.num_samples, device)
if opt.use_lie:
decoder = vae_models.DecoderGRULie(opt.input_size + opt.dim_z, opt.output_size, opt.hidden_size,
opt.decoder_hidden_layers,
opt.num_samples, device)
else:
decoder = vae_models.DecoderGRU(opt.input_size + opt.dim_z, opt.output_size, opt.hidden_size,
opt.decoder_hidden_layers,
opt.num_samples, device)
prior_net.load_state_dict(model['prior_net'])
decoder.load_state_dict(model['decoder'])
prior_net.to(device)
decoder.to(device)
if opt.use_lie:
if opt.dataset_type == 'humanact12':
data = dataset.MotionFolderDatasetHumanAct12(dataset_path, opt, lie_enforce=opt.lie_enforce)
elif opt.dataset_type == 'ntu_rgbd_vibe':
data = dataset.MotionFolderDatasetNtuVIBE(file_prefix, motion_desc_file, labels, opt, joints_num=joints_num,
offset=True, extract_joints=paramUtil.kinect_vibe_extract_joints)
elif opt.dataset_type == 'mocap':
data = dataset.MotionFolderDatasetMocap(clip_path, dataset_path, opt)
motion_dataset = dataset.MotionDataset(data, opt)
motion_loader = DataLoader(motion_dataset, batch_size=opt.batch_size, drop_last=True, num_workers=2,
shuffle=True)
trainer = TrainerLie(motion_loader, opt, device, raw_offsets, kinematic_chain)
else:
trainer = Trainer(None, opt, device)
if opt.do_random:
fake_motion, classes = trainer.evaluate(prior_net, decoder, opt.num_samples)
fake_motion = fake_motion.cpu().numpy()
else:
categories = np.arange(opt.dim_category).repeat(opt.replic_times, axis=0)
num_samples = categories.shape[0]
category_oh, classes = trainer.get_cate_one_hot(categories)
fake_motion, _ = trainer.evaluate(prior_net, decoder, num_samples, category_oh)
fake_motion = fake_motion.cpu().numpy()
print(fake_motion.shape)
for i in range(fake_motion.shape[0]):
class_type = enumerator[label_dec[classes[i]]]
motion_orig = fake_motion[i]
if not os.path.exists(result_path):
os.makedirs(result_path)
keypoint_path = os.path.join(result_path, 'keypoint')
if not os.path.exists(keypoint_path):
os.makedirs(keypoint_path)
file_name = os.path.join(result_path, class_type + str(i) + ".gif")
offset = np.matlib.repmat(np.array([motion_orig[0, 0], motion_orig[0, 1], motion_orig[0, 2]]),
motion_orig.shape[0], joints_num)
motion_mat = motion_orig - offset
motion_mat = motion_mat.reshape(-1, joints_num, 3)
np.save(os.path.join(keypoint_path, class_type + str(i) + '_3d.npy'), motion_mat)
if opt.dataset_type == "humanact12":
plot_3d_motion_v2(motion_mat, kinematic_chain, save_path=file_name, interval=80)
elif opt.dataset_type == "ntu_rgbd_vibe":
plot_3d_motion_v2(motion_mat, kinematic_chain, save_path=file_name, interval=80)
elif opt.dataset_type == "mocap":
plot_3d_motion_v2(motion_mat, kinematic_chain, save_path=file_name, interval=80, dataset="mocap")