Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in differentiating inv(matrix) with LAPACK function getrf! #2260

Open
junyixu opened this issue Jan 9, 2025 · 3 comments
Open

Error in differentiating inv(matrix) with LAPACK function getrf! #2260

junyixu opened this issue Jan 9, 2025 · 3 comments

Comments

@junyixu
Copy link

junyixu commented Jan 9, 2025

When using Trixi.jl with Enzyme.jl's automatic differentiation, I encountered an error with LAPACK's getrf! function:

ERROR: No augmented forward pass found for dgetrf_64_

The error occurs in the following function from Trixi.jl (src/solvers/dgsem/basis_lobatto_legendre.jl:771): junyixu/TrixiEnzyme.jl#1 (comment)

I've distilled the problem into a minimal working example:

MWE

using Enzyme

# Helper function for Legendre polynomials
function legendre_polynomial_and_derivative(n, x)
    if n == 0
        return 1.0, 0.0
    elseif n == 1
        return x, 1.0
    end
    
    p_prev = 1.0    # P₀(x)
    p = x           # P₁(x)
    dp_prev = 0.0   # P₀'(x)
    dp = 1.0        # P₁'(x)
    
    for i in 2:n
        p_new = ((2i-1)*x*p - (i-1)*p_prev)/i
        dp_new = ((2i-1)*(p + x*dp) - (i-1)*dp_prev)/i
        p_prev, dp_prev = p, dp
        p, dp = p_new, dp_new
    end
    return p, dp
end

# Main function to test
function vandermonde_legendre(nodes, N::Integer)
    n_nodes = length(nodes)
    n_modes = N + 1
    vandermonde = zeros(n_nodes, n_modes)
    for i in 1:n_nodes
        for m in 1:n_modes
            vandermonde[i, m], _ = legendre_polynomial_and_derivative(m - 1, nodes[i])
        end
    end
    return inv(vandermonde)  # only return inverse for simplification
end

# Test function using vandermonde_legendre
function f(x)
    nodes = [-1.0, 0.0, 1.0]  # fixed nodes for testing
    V_inv = vandermonde_legendre(nodes, 2)
    return sum(V_inv)  # return scalar output
end

# Try automatic differentiation
x = 1.0
result = autodiff(Reverse, f, Active, Active(1.0))

Environment

Enzyme v0.13.24
Trixi v0.9.13

I noticed a similar discussion in #1820 about LAPACK functions. Would defining custom Enzyme rules be a solution here, or are there other recommended approaches for handling LAPACK functions in automatic differentiation?

@junyixu
Copy link
Author

junyixu commented Jan 10, 2025

Output of the MWE:

julia> include("troubleshooting.jl")
f (generic function with 1 method)

julia> result = autodiff(Reverse, f, Active, Active(1.0))
ERROR:
No augmented forward pass found for dgetrf_64_
 at context:   call void @dgetrf_64_(i8* nonnull %8, i8* nonnull %11, i64 %42, i8* nonnull %14, i64 %46, i64 %bitcast_coercion42) #77 [ "jl_roots"({} addrspace(10)* null, {} addrspace(10)* %39, {} addrspace(10)* null, {} addrspace(10)* %2, {} addrspace(10)* null, {} addrspace(10)* null) ], !dbg !145

Stacktrace:
 [1] #getrf!#1
   @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:565


Stacktrace:
  [1] #getrf!#1
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:565
  [2] getrf!
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lapack.jl:557 [inlined]
  [3] #lu!#158
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:82 [inlined]
  [4] lu!
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:81 [inlined]
  [5] #lu#164
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:300 [inlined]
  [6] lu (repeats 2 times)
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/lu.jl:299 [inlined]
  [7] inv
    @ ~/.local/stow/julia-1.10.2/share/julia/stdlib/v1.10/LinearAlgebra/src/dense.jl:917
  [8] vandermonde_legendre
    @ ~/WorkSpace/Enzyme_Trixi_origin/troubleshooting.jl:36
  [9] f
    @ ~/WorkSpace/Enzyme_Trixi_origin/troubleshooting.jl:42 [inlined]
 [10] diffejulia_f_161wrap
    @ ~/WorkSpace/Enzyme_Trixi_origin/troubleshooting.jl:0
 [11] macro expansion
    @ ~/.julia/packages/Enzyme/ydGh2/src/compiler.jl:5218 [inlined]
 [12] enzyme_call
    @ ~/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4764 [inlined]
 [13] CombinedAdjointThunk
    @ ~/.julia/packages/Enzyme/ydGh2/src/compiler.jl:4636 [inlined]
 [14] autodiff
    @ ~/.julia/packages/Enzyme/ydGh2/src/Enzyme.jl:503 [inlined]
 [15] autodiff(mode::ReverseMode{false, false, FFIABI, false, false}, f::typeof(f), ::Type{Active}, args::Active{Float64})
    @ Enzyme ~/.julia/packages/Enzyme/ydGh2/src/Enzyme.jl:524
 [16] top-level scope
    @ REPL[2]:1

@wsmoses
Copy link
Member

wsmoses commented Jan 10, 2025

@michel2323 would you be able to look into adding an EnzymeRule for matrix inv?

@michel2323
Copy link
Collaborator

I think the best way is to add a rule for lu to internal_rules.jl. I'll look into this @amontoison

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants