-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclipseg.py
42 lines (34 loc) · 1.4 KB
/
clipseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from PIL import Image
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
url = "sbux.jpg"
# image = Image.open(requests.get(url, stream=True).raw)
image = Image.open(url)
def segment_image(frame):
prompts = ["cup"] # define things we want to identify
inputs = processor(text=prompts, images=[frame] * len(prompts), padding="max_length", return_tensors="pt")
# predict
with torch.no_grad():
outputs = model(**inputs)
preds = outputs.logits.unsqueeze(1)
# visualize
# convert to numpy array
if len(prompts) <= 1:
probs = [torch.flatten(i) for i in preds]
temp = np.zeros((preds.shape[0], preds.shape[0], 3), dtype="uint8")
for idx, i in enumerate(probs):
a = np.array(torch.sigmoid(i)) # this is slow
temp[idx] = np.array([(255, 255, 255) if x > 0.1 else (0, 0, 0) for x in a ])
# else:
# [ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(len(prompts))]
# [ax[i+1].text(0, -15, prompt) for i, prompt in enumerate(prompts)]
img = cv2.cvtColor(temp,cv2.COLOR_RGB2BGR)
return img
cv2.imshow("mask", segment_image(image))
cv2.waitKey()
#plt.show(block=True)