-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiment_whole_policy_evaluation.py
216 lines (165 loc) · 10.3 KB
/
experiment_whole_policy_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
from data_utils import get_train_holdout_test, MultistageOptimisationDataset, MultistageOptimisationDatasetEvaluation
from models import two_stage, DFL, DFF
from evaluation_utils import (
predict_then_optimise_follow_policy,
oracle_follow_policy,
predict_then_optimise_follow_policy_singlestage,
)
from optimisation_utils import battery_storage_objective_function
from hyperparameters import init_hyperparams_battery_storage
import torch
import pickle
from tqdm import tqdm
import os
import pandas as pd
import numpy as np
def experiment_whole_policy_evaluation(setting):
hyperparameters = init_hyperparams_battery_storage(setting)
# Get and split data
data = get_train_holdout_test(hyperparameters = hyperparameters)
# Input layer size in network
hyperparameters['n_context'] = int(len(hyperparameters['forwards_variables']) * hyperparameters['f']
+ len(hyperparameters['backwards_variables']) * hyperparameters['l']
+ len(hyperparameters['static_variables']))
## Set models and corresponding optimisers
# Decision focused forecasting
dff= DFF(hyperparameters = hyperparameters)
optimiser = torch.optim.Adam(dff.parameters(), lr = hyperparameters['learning_rate'])
# Two stage, separate predict and optimise
just_forecasting = two_stage(hyperparameters = hyperparameters)
optimiser_just_forecasting = torch.optim.Adam(just_forecasting.prediction_module.parameters(),
lr = hyperparameters['learning_rate'])
# DFL but single stage
dfl = DFL(hyperparameters = hyperparameters)
optimiser_dfl = torch.optim.Adam(dfl.parameters(),
lr = hyperparameters['learning_rate'])
# Set torch datasets and dataloaders
set_types = set([name.split("_")[-1] for name in data])
torch_datasets = {}
for name in set_types:
torch_datasets[name] = MultistageOptimisationDataset(X = data[f'X_{name}'], Y = data[f'Y_{name}'],
hyperparameters = hyperparameters)
dataloaders = {}
for name in set_types:
shuffle = True if name == "train" else False
dataloaders[name] = torch.utils.data.DataLoader(dataset = torch_datasets[name],
batch_size = hyperparameters['batch_size'],
shuffle = shuffle)
# Evaluation dataloader
dataset_evaluation = MultistageOptimisationDatasetEvaluation(X = data[f'X_test'], Y = data[f'Y_test'],
hyperparameters = hyperparameters)
dataloader_evaluation = torch.utils.data.DataLoader(dataset = dataset_evaluation,
batch_size = hyperparameters['batch_size'],
shuffle = False)
# Set useful dictionaries for iteration over different models in training and evaluation
model_names = ['dff','two_stage', 'dfl']
# Dictionary of models
models_dct = dict(zip(model_names,[dff,just_forecasting, dfl]))
# Dictionary of optimisers
optimisers_dct = {}
for name in model_names:
optimisers_dct[name] = torch.optim.Adam(models_dct[name].parameters(),
lr = hyperparameters['learning_rate'])
# Result tracking objects {{[]}} - list within dict within dict
models_losses = {}
for name in set_types:
models_losses[name] = {}
for model_name in model_names:
models_losses[name][f"{model_name}_multi"] = []
if model_name != 'dff':
models_losses[name][f"{model_name}_single"] = []
# Loss at initialisation
# Loop across models
# Oracle case
decisions_opt, true_parameters_test = oracle_follow_policy(dataloader_evaluation = dataloader_evaluation, hyperparameters = hyperparameters)
oracle_loss = battery_storage_objective_function(decisions = decisions_opt,
uncertain_parameters = true_parameters_test,
hyperparameters = hyperparameters)
oracle_loss = float(oracle_loss.detach().numpy())
loss_string = f""
oracle_loss_string = f"_oracle={float(oracle_loss):.3f}"
loss_string += oracle_loss_string
for model_name, model in models_dct.items():
decisions_test, true_parameters_test = predict_then_optimise_follow_policy(dataloader_evaluation = dataloader_evaluation,
prediction_model_trained = model.prediction_module,
hyperparameters = hyperparameters)
test_loss = battery_storage_objective_function(decisions = decisions_test,
uncertain_parameters = true_parameters_test,
hyperparameters = hyperparameters)
models_losses['test'][f"{model_name}_multi"].append(float(test_loss.detach().numpy()))
loss_string += f"_{model_name}_multi={float(test_loss.detach().numpy()):.3f}"
if model_name != 'dff':
decisions_test, true_parameters_test = predict_then_optimise_follow_policy_singlestage(dataloader_evaluation = dataloader_evaluation,
prediction_model_trained = model.prediction_module,
hyperparameters = hyperparameters)
test_loss = battery_storage_objective_function(decisions = decisions_test,
uncertain_parameters = true_parameters_test,
hyperparameters = hyperparameters)
models_losses['test'][f"{model_name}_single"].append(float(test_loss.detach().numpy()))
loss_string += f"_{model_name}_single={float(test_loss.detach().numpy()):.3f}"
models_losses['test']['oracle'] = [oracle_loss]
print(loss_string)
# Training
# Epoch loop
for i in (pbar := tqdm(range(hyperparameters['epochs']), desc = f"Epoch=0{loss_string}", leave = False)):
loss_string = ""
loss_string += oracle_loss_string
# Dataloader loop
for context, true_parameters in tqdm(dataloaders["train"], leave = False):
# Model loop
for model_name, model in models_dct.items():
optimiser = optimisers_dct[model_name]
optimiser.zero_grad()
if 'two_stage' in model_name:
predictions = model(**context)
loss = torch.nn.MSELoss()(true_parameters['theta'], predictions['theta'])
else:
decisions_MS = model(**context)
loss = battery_storage_objective_function(decisions = decisions_MS,
uncertain_parameters = true_parameters,
hyperparameters = dff.hyperparameters)
loss.backward()
optimiser.step()
# Loss on test set
for model_name, model in models_dct.items():
decisions_test, true_parameters_test = predict_then_optimise_follow_policy(dataloader_evaluation = dataloader_evaluation,
prediction_model_trained = model.prediction_module,
hyperparameters = hyperparameters)
test_loss = battery_storage_objective_function(decisions = decisions_test,
uncertain_parameters = true_parameters_test,
hyperparameters = hyperparameters)
models_losses['test'][f"{model_name}_multi"].append(float(test_loss.detach().numpy()))
loss_string += f"_{model_name}_multi={float(test_loss.detach().numpy()):.3f}"
if model_name != 'dff':
decisions_test, true_parameters_test = predict_then_optimise_follow_policy_singlestage(dataloader_evaluation = dataloader_evaluation,
prediction_model_trained = model.prediction_module,
hyperparameters = hyperparameters)
test_loss = battery_storage_objective_function(decisions = decisions_test,
uncertain_parameters = true_parameters_test,
hyperparameters = hyperparameters)
models_losses['test'][f"{model_name}_single"].append(float(test_loss.detach().numpy()))
loss_string += f"_{model_name}_single={float(test_loss.detach().numpy()):.3f}"
models_losses['test']['oracle'].append(oracle_loss)
pbar.set_description(f"Epoch={i+1}{loss_string}")
## Recording experiment outcomes
# Save models
hyperparameters_for_path = {key:value for key, value in hyperparameters.items() if "variable" not in key}
base_path = os.path.join(".","results","policy",str(hyperparameters_for_path))
# For replicating experiments
directory = os.listdir(base_path)
n_exp = np.max(([0 if not 'exp_' in folder else int(folder.split('_')[-1]) for folder in directory]))
n_exp += 1
base_path = os.path.join(base_path,f'exp_{n_exp}')
for model_name, model in models_dct.items():
model_path = os.path.join(base_path,model_name,"model.pt")
if not os.path.exists(os.path.dirname(model_path)): # Make folders if they don't exist already
os.makedirs(os.path.dirname(model_path))
torch.save(model, model_path)
# Save full hyperparameter information
hyperparameters_path = os.path.join(base_path, 'hyperparams.pkl')
with open(hyperparameters_path, 'wb') as f:
pickle.dump(hyperparameters, f)
# Save results
df_losses = pd.DataFrame(models_losses['test'])
results_path = os.path.join(base_path, 'results.csv')
df_losses.to_csv(results_path, index = False)