forked from Shark-NLP/DiffuSeq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_util.py
executable file
·426 lines (373 loc) · 15.5 KB
/
train_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import copy
import functools
import os
import blobfile as bf
import numpy as np
import torch as th
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
import io
from diffuseq.utils import dist_util, logger
from diffuseq.utils.fp16_util import (
make_master_params,
master_params_to_model_params,
model_grads_to_master_grads,
unflatten_master_params,
zero_grad,
)
from diffuseq.utils.nn import update_ema
from diffuseq.step_sample import LossAwareSampler, UniformSampler
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(
self,
*,
model,
diffusion,
data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler=None,
weight_decay=0.0,
learning_steps=0,
checkpoint_path='',
gradient_clipping=-1.,
eval_data=None,
eval_interval=-1,
):
self.model = model
self.diffusion = diffusion
self.data = data
self.eval_data = eval_data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr
self.ema_rate = (
[ema_rate]
if isinstance(ema_rate, float)
else [float(x) for x in ema_rate.split(",")]
)
self.log_interval = log_interval
self.eval_interval = eval_interval
self.save_interval = save_interval
self.resume_checkpoint = resume_checkpoint
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.weight_decay = weight_decay
self.learning_steps = learning_steps
self.gradient_clipping = gradient_clipping
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size * dist.get_world_size()
self.model_params = list(self.model.parameters())
self.master_params = self.model_params
self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
self.sync_cuda = th.cuda.is_available()
self.checkpoint_path = checkpoint_path # DEBUG **
self._load_and_sync_parameters()
if self.use_fp16:
self._setup_fp16()
self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
if self.resume_step:
# self._load_optimizer_state()
frac_done = (self.step + self.resume_step) / self.learning_steps
lr = self.lr * (1 - frac_done)
self.opt = AdamW(self.master_params, lr=lr, weight_decay=self.weight_decay)
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.ema_params = [
self._load_ema_parameters(rate) for rate in self.ema_rate
]
else:
self.ema_params = [
copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
]
if th.cuda.is_available(): # DEBUG **
self.use_ddp = True
print(dist_util.dev())
self.ddp_model = DDP(
self.model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
if dist.get_world_size() > 1:
logger.warn(
"Distributed training requires CUDA. "
"Gradients will not be synchronized properly!"
)
self.use_ddp = False
self.ddp_model = self.model
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint[-3:] == '.pt':
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
if dist.get_rank() == 0:
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
dist_util.load_state_dict(
actual_model_path(resume_checkpoint), map_location=dist_util.dev()
)
)
dist_util.sync_params(self.model.parameters())
def _load_ema_parameters(self, rate):
ema_params = copy.deepcopy(self.master_params)
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
if ema_checkpoint:
if dist.get_rank() == 0:
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
state_dict = dist_util.load_state_dict(
actual_model_path(ema_checkpoint), map_location=dist_util.dev()
)
ema_params = self._state_dict_to_master_params(state_dict)
dist_util.sync_params(ema_params)
return ema_params
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if bf.exists(main_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {main_checkpoint}")
state_dict = dist_util.load_state_dict(
actual_model_path(main_checkpoint), map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def _setup_fp16(self):
self.master_params = make_master_params(self.model_params)
self.model.convert_to_fp16()
def run_loop(self):
while (
not self.learning_steps
or self.step + self.resume_step < self.learning_steps
):
batch, cond = next(self.data)
self.run_step(batch, cond)
if self.step % self.log_interval == 0:
logger.dumpkvs()
if self.eval_data is not None and self.step % self.eval_interval == 0:
batch_eval, cond_eval = next(self.eval_data)
self.forward_only(batch_eval, cond_eval)
print('eval on validation set')
logger.dumpkvs()
if self.step > 0 and self.step % self.save_interval == 0:
self.save()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
if self.use_fp16:
self.optimize_fp16()
else:
self.optimize_normal()
self.log_step()
def forward_only(self, batch, cond):
with th.no_grad():
zero_grad(self.model_params)
for i in range(0, batch.shape[0], self.microbatch):
micro = batch[i: i + self.microbatch].to(dist_util.dev())
micro_cond = {
k: v[i: i + self.microbatch].to(dist_util.dev())
for k, v in cond.items()
}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
# print(micro_cond.keys())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
model_kwargs=micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
log_loss_dict(
self.diffusion, t, {f"eval_{k}": v * weights for k, v in losses.items()}
)
def forward_backward(self, batch, cond):
zero_grad(self.model_params)
for i in range(0, batch.shape[0], self.microbatch):
micro = batch[i : i + self.microbatch].to(dist_util.dev())
micro_cond = {
k: v[i : i + self.microbatch].to(dist_util.dev())
for k, v in cond.items()
}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
# print(micro_cond.keys())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
model_kwargs=micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
if self.use_fp16:
loss_scale = 2 ** self.lg_loss_scale
(loss * loss_scale).backward()
else:
loss.backward()
def optimize_fp16(self):
if any(not th.isfinite(p.grad).all() for p in self.model_params):
self.lg_loss_scale -= 1
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
return
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
master_params_to_model_params(self.model_params, self.master_params)
self.lg_loss_scale += self.fp16_scale_growth
def grad_clip(self):
# print('doing gradient clipping')
max_grad_norm=self.gradient_clipping #3.0
if hasattr(self.opt, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.opt.clip_grad_norm(max_grad_norm)
# else:
# assert False
# elif hasattr(self.model, "clip_grad_norm_"):
# # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
# self.model.clip_grad_norm_(args.max_grad_norm)
else:
# Revert to normal clipping otherwise, handling Apex or full precision
th.nn.utils.clip_grad_norm_(
self.model.parameters(), #amp.master_params(self.opt) if self.use_apex else
max_grad_norm,
)
def optimize_normal(self):
if self.gradient_clipping > 0:
self.grad_clip()
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
def _log_grad_norm(self):
sqsum = 0.0
# cnt = 0
for p in self.master_params:
# print(cnt, p) ## DEBUG
# print(cnt, p.grad)
# cnt += 1
if p.grad != None:
sqsum += (p.grad ** 2).sum().item()
logger.logkv_mean("grad_norm", np.sqrt(sqsum))
def _anneal_lr(self):
if not self.learning_steps:
return
frac_done = (self.step + self.resume_step) / self.learning_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
if self.use_fp16:
logger.logkv("lg_loss_scale", self.lg_loss_scale)
def save(self):
def save_checkpoint(rate, params):
state_dict = self._master_params_to_state_dict(params)
if dist.get_rank() == 0:
logger.log(f"saving model {rate}...")
if not rate:
filename = f"model{(self.step+self.resume_step):06d}.pt"
else:
filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
print('writing to', bf.join(get_blob_logdir(), filename))
print('writing to', bf.join(self.checkpoint_path, filename))
# with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
# th.save(state_dict, f)
with bf.BlobFile(bf.join(self.checkpoint_path, filename), "wb") as f: # DEBUG **
th.save(state_dict, f) # save locally
# pass # save empty
# save_checkpoint(0, self.master_params)
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
dist.barrier()
def _master_params_to_state_dict(self, master_params):
if self.use_fp16:
master_params = unflatten_master_params(
list(self.model.parameters()), master_params # DEBUG **
)
state_dict = self.model.state_dict()
for i, (name, _value) in enumerate(self.model.named_parameters()):
assert name in state_dict
state_dict[name] = master_params[i]
return state_dict
def _state_dict_to_master_params(self, state_dict):
params = [state_dict[name] for name, _ in self.model.named_parameters()]
if self.use_fp16:
return make_master_params(params)
else:
return params
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
if filename[-3:] == '.pt':
return int(filename[-9:-3])
else:
return 0
def get_blob_logdir():
return os.environ.get("DIFFUSION_BLOB_LOGDIR", logger.get_dir())
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def find_ema_checkpoint(main_checkpoint, step, rate):
if main_checkpoint is None:
return None
filename = f"ema_{rate}_{(step):06d}.pt"
path = bf.join(bf.dirname(main_checkpoint), filename)
if bf.exists(path):
return path
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
def actual_model_path(model_path):
return model_path