-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinf_classifier.py
139 lines (123 loc) · 6.27 KB
/
inf_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import sys
import torch
import json
import random
import argparse
import collections
import torch.nn as nn
from uer.utils.vocab import Vocab
from uer.utils.constants import *
from uer.utils.tokenizer import *
from uer.model_builder import build_model
from uer.utils.optimizers import BertAdam
from uer.utils.config import load_hyperparam
from uer.utils.seed import set_seed
from uer.model_saver import save_model
from brain import KnowledgeGraph
from multiprocessing import Process, Pool
import numpy as np
class BertClassifier(nn.Module):
def __init__(self, args, model):
super(BertClassifier, self).__init__()
self.embedding = model.embedding
self.encoder = model.encoder
self.labels_num = args.labels_num
self.pooling = args.pooling
self.output_layer_1 = nn.Linear(args.hidden_size, args.hidden_size)
self.output_layer_2 = nn.Linear(args.hidden_size, args.labels_num)
self.softmax = nn.LogSoftmax(dim=-1)
self.criterion = nn.NLLLoss()
self.use_vm = False if args.no_vm else True
print("[BertClassifier] use visible_matrix: {}".format(self.use_vm))
def forward(self, src, label, mask, pos=None, vm=None):
"""
Args:
src: [batch_size x seq_length]
label: [batch_size]
mask: [batch_size x seq_length]
"""
# Embedding.
emb = self.embedding(src, mask, pos)
# Encoder.
if not self.use_vm:
vm = None
output = self.encoder(emb, mask, vm)
# Target.
if self.pooling == "mean":
output = torch.mean(output, dim=1)
elif self.pooling == "max":
output = torch.max(output, dim=1)[0]
elif self.pooling == "last":
output = output[:, -1, :]
else:
output = output[:, 0, :]
output = torch.tanh(self.output_layer_1(output))
logits = self.output_layer_2(output)
loss = self.criterion(self.softmax(logits.view(-1, self.labels_num)), label.view(-1))
return loss, logits
def add_argument_for_paser_of_BertClassifier(parser):
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/classifier_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
help="Path of the vocabulary file.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", type=str, required=True,
help="Path of the testset.")
parser.add_argument("--config_path", default="./models/google_config.json", type=str,
help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size.")
parser.add_argument("--seq_length", type=int, default=256,
help="Sequence length.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
"cnn", "gatedcnn", "attn", \
"rcnn", "crnn", "gpt", "bilstm"], \
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
parser.add_argument("--pooling", choices=["mean", "max", "first", "last"], default="first",
help="Pooling type.")
# Subword options.
parser.add_argument("--subword_type", choices=["none", "char"], default="none",
help="Subword feature type.")
parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
help="Path of the subword vocabulary file.")
parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
help="Subencoder type.")
parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")
# Tokenizer options.
parser.add_argument("--tokenizer_from_huggingface", default="", type=str,
help="transfomer.tokenizer or self defined, default: self defined") # new-tokenizer
parser.add_argument("--tokenizer", choices=["bert", "char", "word", "space"], default="bert",
help="Specify the tokenizer."
"Original Google BERT uses bert tokenizer on Chinese corpus."
"Char tokenizer segments sentences into characters."
"Word tokenizer supports online word segmentation based on jieba segmentor."
"Space tokenizer segments sentences into words according to space."
)
# Optimizer options.
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
# Training options.
parser.add_argument("--dropout", type=float, default=0.5,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=5,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
# Evaluation options.
parser.add_argument("--mean_reciprocal_rank", action="store_true", help="Evaluation metrics for DBQA dataset.")
# kg
parser.add_argument("--kg_name", required=True, help="KG name or path")
parser.add_argument("--workers_num", type=int, default=1, help="number of process for loading dataset")
parser.add_argument("--no_vm", action="store_true", help="Disable the visible_matrix")