-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfCheXbert_half_integration.txt
899 lines (899 loc) · 61.5 KB
/
infCheXbert_half_integration.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
lr= 5e-5
dropout rate: 0.1
Batch size: 16
training time 7673 min (7632+41)
The number of training instances: 99371
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 100, Avg loss: 0.968
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 200, Avg loss: 0.611
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 300, Avg loss: 0.298
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 400, Avg loss: 0.280
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 500, Avg loss: 0.279
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 600, Avg loss: 0.226
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 700, Avg loss: 0.248
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 800, Avg loss: 0.186
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 900, Avg loss: 0.151
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1000, Avg loss: 0.163
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1100, Avg loss: 0.136
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1200, Avg loss: 0.182
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1300, Avg loss: 0.139
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1400, Avg loss: 0.109
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1500, Avg loss: 0.164
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1600, Avg loss: 0.144
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1700, Avg loss: 0.137
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1800, Avg loss: 0.132
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 1900, Avg loss: 0.156
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2000, Avg loss: 0.118
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2100, Avg loss: 0.147
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2200, Avg loss: 0.106
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2300, Avg loss: 0.100
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2400, Avg loss: 0.115
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2500, Avg loss: 0.113
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2600, Avg loss: 0.097
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2700, Avg loss: 0.139
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2800, Avg loss: 0.105
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 2900, Avg loss: 0.093
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3000, Avg loss: 0.119
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3100, Avg loss: 0.116
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3200, Avg loss: 0.109
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3300, Avg loss: 0.094
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3400, Avg loss: 0.106
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3500, Avg loss: 0.119
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3600, Avg loss: 0.120
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3700, Avg loss: 0.132
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3800, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 3900, Avg loss: 0.114
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4000, Avg loss: 0.108
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4100, Avg loss: 0.100
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4200, Avg loss: 0.096
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4300, Avg loss: 0.102
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4400, Avg loss: 0.081
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4500, Avg loss: 0.120
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4600, Avg loss: 0.107
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4700, Avg loss: 0.127
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4800, Avg loss: 0.082
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 4900, Avg loss: 0.082
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5000, Avg loss: 0.083
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5100, Avg loss: 0.100
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5200, Avg loss: 0.069
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5300, Avg loss: 0.103
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5400, Avg loss: 0.083
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5500, Avg loss: 0.116
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5600, Avg loss: 0.082
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5700, Avg loss: 0.070
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5800, Avg loss: 0.085
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 5900, Avg loss: 0.093
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 6000, Avg loss: 0.089
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 6100, Avg loss: 0.085
labelsname: label_Atelectasis, Epoch id: 1, Training steps: 6200, Avg loss: 0.098
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Atelectasis, Label_value 0: 0.990, 0.990, 0.990
labelsname: label_Atelectasis, Label_value 1: 0.964, 0.964, 0.964
labelsname: label_Atelectasis, Label_value 2: 0.786, 0.786, 0.786
labelsname: label_Atelectasis, Label_value 3: 0.864, 0.864, 0.864
Acc. (Correct/Total): 0.9776 (32382/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24657, 213, 8, 52],
[ 10, 6132, 69, 161],
[ 0, 38, 116, 12],
[ 46, 141, 17, 1452]])
Report precision, recall, and f1:
labelsname: label_Atelectasis, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Atelectasis, Label_value 1: 0.962, 0.962, 0.962
labelsname: label_Atelectasis, Label_value 2: 0.699, 0.699, 0.699
labelsname: label_Atelectasis, Label_value 3: 0.877, 0.877, 0.877
Acc. (Correct/Total): 0.9768 (32357/33124)
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 100, Avg loss: 0.123
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 200, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 300, Avg loss: 0.114
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 400, Avg loss: 0.103
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 500, Avg loss: 0.075
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 600, Avg loss: 0.072
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 700, Avg loss: 0.082
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 800, Avg loss: 0.080
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 900, Avg loss: 0.093
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1000, Avg loss: 0.071
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1100, Avg loss: 0.085
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1200, Avg loss: 0.134
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1300, Avg loss: 0.074
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1400, Avg loss: 0.061
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1500, Avg loss: 0.106
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1600, Avg loss: 0.074
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1700, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1800, Avg loss: 0.097
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 1900, Avg loss: 0.102
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2000, Avg loss: 0.071
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2100, Avg loss: 0.095
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2200, Avg loss: 0.055
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2300, Avg loss: 0.079
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2400, Avg loss: 0.075
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2500, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2600, Avg loss: 0.076
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2700, Avg loss: 0.103
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2800, Avg loss: 0.079
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 2900, Avg loss: 0.074
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3000, Avg loss: 0.087
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3100, Avg loss: 0.079
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3200, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3300, Avg loss: 0.064
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3400, Avg loss: 0.085
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3500, Avg loss: 0.079
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3600, Avg loss: 0.097
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3700, Avg loss: 0.105
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3800, Avg loss: 0.064
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 3900, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4000, Avg loss: 0.082
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4100, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4200, Avg loss: 0.070
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4300, Avg loss: 0.078
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4400, Avg loss: 0.058
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4500, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4600, Avg loss: 0.083
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4700, Avg loss: 0.094
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4800, Avg loss: 0.068
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 4900, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5000, Avg loss: 0.066
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5100, Avg loss: 0.084
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5200, Avg loss: 0.053
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5300, Avg loss: 0.076
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5400, Avg loss: 0.062
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5500, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5600, Avg loss: 0.062
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5700, Avg loss: 0.055
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5800, Avg loss: 0.063
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 5900, Avg loss: 0.069
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 6000, Avg loss: 0.071
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 6100, Avg loss: 0.059
labelsname: label_Atelectasis, Epoch id: 2, Training steps: 6200, Avg loss: 0.073
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Atelectasis, Label_value 0: 0.990, 0.990, 0.990
labelsname: label_Atelectasis, Label_value 1: 0.963, 0.963, 0.963
labelsname: label_Atelectasis, Label_value 2: 0.840, 0.840, 0.840
labelsname: label_Atelectasis, Label_value 3: 0.896, 0.896, 0.896
Acc. (Correct/Total): 0.9793 (32437/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24661, 211, 8, 50],
[ 34, 6159, 55, 161],
[ 0, 32, 134, 8],
[ 18, 122, 13, 1458]])
Report precision, recall, and f1:
labelsname: label_Atelectasis, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Atelectasis, Label_value 1: 0.961, 0.961, 0.961
labelsname: label_Atelectasis, Label_value 2: 0.770, 0.770, 0.770
labelsname: label_Atelectasis, Label_value 3: 0.905, 0.905, 0.905
Acc. (Correct/Total): 0.9785 (32412/33124)
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 100, Avg loss: 0.096
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 200, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 300, Avg loss: 0.099
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 400, Avg loss: 0.083
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 500, Avg loss: 0.057
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 600, Avg loss: 0.056
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 700, Avg loss: 0.062
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 800, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 900, Avg loss: 0.080
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1000, Avg loss: 0.053
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1100, Avg loss: 0.059
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1200, Avg loss: 0.111
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1300, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1400, Avg loss: 0.051
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1500, Avg loss: 0.093
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1600, Avg loss: 0.053
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1700, Avg loss: 0.066
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1800, Avg loss: 0.075
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 1900, Avg loss: 0.080
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2000, Avg loss: 0.058
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2100, Avg loss: 0.079
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2200, Avg loss: 0.043
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2300, Avg loss: 0.053
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2400, Avg loss: 0.055
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2500, Avg loss: 0.061
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2600, Avg loss: 0.063
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2700, Avg loss: 0.084
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2800, Avg loss: 0.069
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 2900, Avg loss: 0.063
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3000, Avg loss: 0.080
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3100, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3200, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3300, Avg loss: 0.047
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3400, Avg loss: 0.067
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3500, Avg loss: 0.063
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3600, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3700, Avg loss: 0.088
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3800, Avg loss: 0.055
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 3900, Avg loss: 0.070
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4000, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4100, Avg loss: 0.065
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4200, Avg loss: 0.047
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4300, Avg loss: 0.067
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4400, Avg loss: 0.051
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4500, Avg loss: 0.072
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4600, Avg loss: 0.070
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4700, Avg loss: 0.077
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4800, Avg loss: 0.060
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 4900, Avg loss: 0.052
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5000, Avg loss: 0.057
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5100, Avg loss: 0.076
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5200, Avg loss: 0.046
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5300, Avg loss: 0.063
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5400, Avg loss: 0.050
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5500, Avg loss: 0.073
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5600, Avg loss: 0.053
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5700, Avg loss: 0.052
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5800, Avg loss: 0.052
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 5900, Avg loss: 0.058
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 6000, Avg loss: 0.058
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 6100, Avg loss: 0.050
labelsname: label_Atelectasis, Epoch id: 3, Training steps: 6200, Avg loss: 0.063
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Atelectasis, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Atelectasis, Label_value 1: 0.972, 0.972, 0.972
labelsname: label_Atelectasis, Label_value 2: 0.801, 0.801, 0.801
labelsname: label_Atelectasis, Label_value 3: 0.908, 0.908, 0.908
Acc. (Correct/Total): 0.9809 (32492/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24677, 215, 9, 57],
[ 29, 6136, 39, 110],
[ 0, 41, 151, 8],
[ 7, 132, 11, 1502]])
Report precision, recall, and f1:
labelsname: label_Atelectasis, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Atelectasis, Label_value 1: 0.972, 0.972, 0.972
labelsname: label_Atelectasis, Label_value 2: 0.755, 0.755, 0.755
labelsname: label_Atelectasis, Label_value 3: 0.909, 0.909, 0.909
Acc. (Correct/Total): 0.9801 (32466/33124)
Final evaluation on the evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24677, 215, 9, 57],
[ 29, 6136, 39, 110],
[ 0, 41, 151, 8],
[ 7, 132, 11, 1502]])
Report precision, recall, and f1:
labelsname: label_Atelectasis, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Atelectasis, Label_value 1: 0.972, 0.972, 0.972
labelsname: label_Atelectasis, Label_value 2: 0.755, 0.755, 0.755
labelsname: label_Atelectasis, Label_value 3: 0.909, 0.909, 0.909
Acc. (Correct/Total): 0.9801 (32466/33124)
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 100, Avg loss: 1.005
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 200, Avg loss: 0.676
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 300, Avg loss: 0.487
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 400, Avg loss: 0.318
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 500, Avg loss: 0.306
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 600, Avg loss: 0.260
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 700, Avg loss: 0.208
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 800, Avg loss: 0.158
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 900, Avg loss: 0.181
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1000, Avg loss: 0.178
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1100, Avg loss: 0.159
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1200, Avg loss: 0.151
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1300, Avg loss: 0.152
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1400, Avg loss: 0.137
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1500, Avg loss: 0.152
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1600, Avg loss: 0.105
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1700, Avg loss: 0.157
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1800, Avg loss: 0.154
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 1900, Avg loss: 0.140
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2000, Avg loss: 0.105
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2100, Avg loss: 0.133
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2200, Avg loss: 0.145
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2300, Avg loss: 0.120
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2400, Avg loss: 0.094
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2500, Avg loss: 0.131
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2600, Avg loss: 0.106
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2700, Avg loss: 0.098
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2800, Avg loss: 0.124
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 2900, Avg loss: 0.083
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3000, Avg loss: 0.113
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3100, Avg loss: 0.098
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3200, Avg loss: 0.084
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3300, Avg loss: 0.129
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3400, Avg loss: 0.107
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3500, Avg loss: 0.083
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3600, Avg loss: 0.109
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3700, Avg loss: 0.085
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3800, Avg loss: 0.094
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 3900, Avg loss: 0.070
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4000, Avg loss: 0.102
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4100, Avg loss: 0.107
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4200, Avg loss: 0.097
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4300, Avg loss: 0.082
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4400, Avg loss: 0.105
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4500, Avg loss: 0.085
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4600, Avg loss: 0.104
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4700, Avg loss: 0.117
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4800, Avg loss: 0.099
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 4900, Avg loss: 0.049
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5000, Avg loss: 0.073
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5100, Avg loss: 0.116
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5200, Avg loss: 0.079
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5300, Avg loss: 0.088
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5400, Avg loss: 0.081
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5500, Avg loss: 0.077
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5600, Avg loss: 0.101
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5700, Avg loss: 0.072
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5800, Avg loss: 0.090
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 5900, Avg loss: 0.065
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 6000, Avg loss: 0.073
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 6100, Avg loss: 0.106
labelsname: label_Cardiomegaly, Epoch id: 1, Training steps: 6200, Avg loss: 0.080
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.959, 0.959, 0.959
labelsname: label_Cardiomegaly, Label_value 2: 0.973, 0.973, 0.973
labelsname: label_Cardiomegaly, Label_value 3: 0.926, 0.926, 0.926
Acc. (Correct/Total): 0.9803 (32470/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24088, 207, 60, 32],
[ 39, 5827, 80, 101],
[ 8, 45, 1945, 6],
[ 20, 22, 4, 640]])
Report precision, recall, and f1:
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.964, 0.964, 0.964
labelsname: label_Cardiomegaly, Label_value 2: 0.971, 0.971, 0.971
labelsname: label_Cardiomegaly, Label_value 3: 0.933, 0.933, 0.933
Acc. (Correct/Total): 0.9812 (32500/33124)
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 100, Avg loss: 0.108
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 200, Avg loss: 0.055
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 300, Avg loss: 0.089
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 400, Avg loss: 0.074
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 500, Avg loss: 0.110
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 600, Avg loss: 0.082
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 700, Avg loss: 0.088
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 800, Avg loss: 0.069
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 900, Avg loss: 0.089
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1000, Avg loss: 0.069
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1100, Avg loss: 0.086
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1200, Avg loss: 0.084
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1300, Avg loss: 0.083
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1400, Avg loss: 0.080
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1500, Avg loss: 0.089
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1600, Avg loss: 0.059
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1700, Avg loss: 0.101
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1800, Avg loss: 0.101
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 1900, Avg loss: 0.079
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2000, Avg loss: 0.058
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2100, Avg loss: 0.090
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2200, Avg loss: 0.094
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2300, Avg loss: 0.073
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2400, Avg loss: 0.051
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2500, Avg loss: 0.085
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2600, Avg loss: 0.066
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2700, Avg loss: 0.070
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2800, Avg loss: 0.071
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 2900, Avg loss: 0.052
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3000, Avg loss: 0.081
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3100, Avg loss: 0.059
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3200, Avg loss: 0.065
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3300, Avg loss: 0.074
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3400, Avg loss: 0.063
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3500, Avg loss: 0.060
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3600, Avg loss: 0.077
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3700, Avg loss: 0.061
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3800, Avg loss: 0.073
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 3900, Avg loss: 0.035
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4000, Avg loss: 0.075
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4100, Avg loss: 0.074
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4200, Avg loss: 0.071
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4300, Avg loss: 0.063
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4400, Avg loss: 0.075
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4500, Avg loss: 0.066
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4600, Avg loss: 0.076
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4700, Avg loss: 0.082
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4800, Avg loss: 0.071
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 4900, Avg loss: 0.038
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5000, Avg loss: 0.054
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5100, Avg loss: 0.086
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5200, Avg loss: 0.060
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5300, Avg loss: 0.068
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5400, Avg loss: 0.056
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5500, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5600, Avg loss: 0.075
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5700, Avg loss: 0.049
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5800, Avg loss: 0.064
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 5900, Avg loss: 0.046
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 6000, Avg loss: 0.056
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 6100, Avg loss: 0.082
labelsname: label_Cardiomegaly, Epoch id: 2, Training steps: 6200, Avg loss: 0.063
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.973, 0.973, 0.973
labelsname: label_Cardiomegaly, Label_value 2: 0.973, 0.973, 0.973
labelsname: label_Cardiomegaly, Label_value 3: 0.939, 0.939, 0.939
Acc. (Correct/Total): 0.9835 (32579/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24109, 204, 56, 31],
[ 27, 5823, 49, 71],
[ 9, 49, 1980, 5],
[ 10, 25, 4, 672]])
Report precision, recall, and f1:
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.975, 0.975, 0.975
labelsname: label_Cardiomegaly, Label_value 2: 0.969, 0.969, 0.969
labelsname: label_Cardiomegaly, Label_value 3: 0.945, 0.945, 0.945
Acc. (Correct/Total): 0.9837 (32584/33124)
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 100, Avg loss: 0.083
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 200, Avg loss: 0.041
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 300, Avg loss: 0.068
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 400, Avg loss: 0.055
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 500, Avg loss: 0.081
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 600, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 700, Avg loss: 0.067
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 800, Avg loss: 0.055
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 900, Avg loss: 0.068
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1000, Avg loss: 0.052
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1100, Avg loss: 0.066
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1200, Avg loss: 0.065
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1300, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1400, Avg loss: 0.070
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1500, Avg loss: 0.070
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1600, Avg loss: 0.046
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1700, Avg loss: 0.078
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1800, Avg loss: 0.085
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 1900, Avg loss: 0.062
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2000, Avg loss: 0.043
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2100, Avg loss: 0.081
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2200, Avg loss: 0.079
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2300, Avg loss: 0.058
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2400, Avg loss: 0.040
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2500, Avg loss: 0.069
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2600, Avg loss: 0.050
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2700, Avg loss: 0.058
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2800, Avg loss: 0.063
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 2900, Avg loss: 0.043
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3000, Avg loss: 0.063
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3100, Avg loss: 0.050
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3200, Avg loss: 0.047
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3300, Avg loss: 0.060
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3400, Avg loss: 0.050
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3500, Avg loss: 0.045
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3600, Avg loss: 0.062
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3700, Avg loss: 0.050
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3800, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 3900, Avg loss: 0.030
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4000, Avg loss: 0.059
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4100, Avg loss: 0.061
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4200, Avg loss: 0.056
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4300, Avg loss: 0.054
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4400, Avg loss: 0.062
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4500, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4600, Avg loss: 0.058
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4700, Avg loss: 0.064
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4800, Avg loss: 0.058
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 4900, Avg loss: 0.033
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5000, Avg loss: 0.037
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5100, Avg loss: 0.070
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5200, Avg loss: 0.046
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5300, Avg loss: 0.057
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5400, Avg loss: 0.050
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5500, Avg loss: 0.044
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5600, Avg loss: 0.056
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5700, Avg loss: 0.039
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5800, Avg loss: 0.051
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 5900, Avg loss: 0.034
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 6000, Avg loss: 0.039
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 6100, Avg loss: 0.066
labelsname: label_Cardiomegaly, Epoch id: 3, Training steps: 6200, Avg loss: 0.058
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Cardiomegaly, Label_value 0: 0.989, 0.989, 0.989
labelsname: label_Cardiomegaly, Label_value 1: 0.976, 0.976, 0.976
labelsname: label_Cardiomegaly, Label_value 2: 0.967, 0.967, 0.967
labelsname: label_Cardiomegaly, Label_value 3: 0.935, 0.935, 0.935
Acc. (Correct/Total): 0.9839 (32590/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24104, 202, 51, 31],
[ 30, 5822, 44, 43],
[ 13, 48, 1988, 6],
[ 8, 29, 6, 699]])
Report precision, recall, and f1:
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.980, 0.980, 0.980
labelsname: label_Cardiomegaly, Label_value 2: 0.967, 0.967, 0.967
labelsname: label_Cardiomegaly, Label_value 3: 0.942, 0.942, 0.942
Acc. (Correct/Total): 0.9846 (32613/33124)
Final evaluation on the evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[24101, 203, 52, 32],
[ 33, 5821, 45, 42],
[ 13, 48, 1986, 6],
[ 8, 29, 6, 699]])
Report precision, recall, and f1:
labelsname: label_Cardiomegaly, Label_value 0: 0.988, 0.988, 0.988
labelsname: label_Cardiomegaly, Label_value 1: 0.980, 0.980, 0.980
labelsname: label_Cardiomegaly, Label_value 2: 0.967, 0.967, 0.967
labelsname: label_Cardiomegaly, Label_value 3: 0.942, 0.942, 0.942
Acc. (Correct/Total): 0.9844 (32607/33124)
labelsname: label_Consolidation, Epoch id: 1, Training steps: 100, Avg loss: 0.822
labelsname: label_Consolidation, Epoch id: 1, Training steps: 200, Avg loss: 0.438
labelsname: label_Consolidation, Epoch id: 1, Training steps: 300, Avg loss: 0.166
labelsname: label_Consolidation, Epoch id: 1, Training steps: 400, Avg loss: 0.121
labelsname: label_Consolidation, Epoch id: 1, Training steps: 500, Avg loss: 0.131
labelsname: label_Consolidation, Epoch id: 1, Training steps: 600, Avg loss: 0.120
labelsname: label_Consolidation, Epoch id: 1, Training steps: 700, Avg loss: 0.121
labelsname: label_Consolidation, Epoch id: 1, Training steps: 800, Avg loss: 0.124
labelsname: label_Consolidation, Epoch id: 1, Training steps: 900, Avg loss: 0.119
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1000, Avg loss: 0.077
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1100, Avg loss: 0.092
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1200, Avg loss: 0.098
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1300, Avg loss: 0.082
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1400, Avg loss: 0.084
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1500, Avg loss: 0.101
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1600, Avg loss: 0.062
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1700, Avg loss: 0.059
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1800, Avg loss: 0.052
labelsname: label_Consolidation, Epoch id: 1, Training steps: 1900, Avg loss: 0.073
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2000, Avg loss: 0.075
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2100, Avg loss: 0.051
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2200, Avg loss: 0.069
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2300, Avg loss: 0.070
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2400, Avg loss: 0.061
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2500, Avg loss: 0.064
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2600, Avg loss: 0.061
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2700, Avg loss: 0.078
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2800, Avg loss: 0.056
labelsname: label_Consolidation, Epoch id: 1, Training steps: 2900, Avg loss: 0.057
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3000, Avg loss: 0.076
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3100, Avg loss: 0.069
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3200, Avg loss: 0.073
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3300, Avg loss: 0.073
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3400, Avg loss: 0.063
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3500, Avg loss: 0.059
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3600, Avg loss: 0.070
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3700, Avg loss: 0.073
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3800, Avg loss: 0.057
labelsname: label_Consolidation, Epoch id: 1, Training steps: 3900, Avg loss: 0.070
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4000, Avg loss: 0.051
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4100, Avg loss: 0.065
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4200, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4300, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4400, Avg loss: 0.040
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4500, Avg loss: 0.080
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4600, Avg loss: 0.065
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4700, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4800, Avg loss: 0.050
labelsname: label_Consolidation, Epoch id: 1, Training steps: 4900, Avg loss: 0.049
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5000, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5100, Avg loss: 0.052
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5200, Avg loss: 0.070
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5300, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5400, Avg loss: 0.075
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5500, Avg loss: 0.055
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5600, Avg loss: 0.073
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5700, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5800, Avg loss: 0.064
labelsname: label_Consolidation, Epoch id: 1, Training steps: 5900, Avg loss: 0.059
labelsname: label_Consolidation, Epoch id: 1, Training steps: 6000, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 1, Training steps: 6100, Avg loss: 0.042
labelsname: label_Consolidation, Epoch id: 1, Training steps: 6200, Avg loss: 0.046
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Consolidation, Label_value 0: 0.995, 0.995, 0.995
labelsname: label_Consolidation, Label_value 1: 0.905, 0.905, 0.905
labelsname: label_Consolidation, Label_value 2: 0.971, 0.971, 0.971
labelsname: label_Consolidation, Label_value 3: 0.882, 0.882, 0.882
Acc. (Correct/Total): 0.9878 (32721/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[29561, 73, 39, 6],
[ 5, 1548, 68, 124],
[ 3, 12, 1076, 9],
[ 5, 56, 20, 519]])
Report precision, recall, and f1:
labelsname: label_Consolidation, Label_value 0: 0.996, 0.996, 0.996
labelsname: label_Consolidation, Label_value 1: 0.887, 0.887, 0.887
labelsname: label_Consolidation, Label_value 2: 0.978, 0.978, 0.978
labelsname: label_Consolidation, Label_value 3: 0.865, 0.865, 0.865
Acc. (Correct/Total): 0.9873 (32704/33124)
labelsname: label_Consolidation, Epoch id: 2, Training steps: 100, Avg loss: 0.076
labelsname: label_Consolidation, Epoch id: 2, Training steps: 200, Avg loss: 0.049
labelsname: label_Consolidation, Epoch id: 2, Training steps: 300, Avg loss: 0.058
labelsname: label_Consolidation, Epoch id: 2, Training steps: 400, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 2, Training steps: 500, Avg loss: 0.047
labelsname: label_Consolidation, Epoch id: 2, Training steps: 600, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 2, Training steps: 700, Avg loss: 0.057
labelsname: label_Consolidation, Epoch id: 2, Training steps: 800, Avg loss: 0.057
labelsname: label_Consolidation, Epoch id: 2, Training steps: 900, Avg loss: 0.077
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1000, Avg loss: 0.034
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1100, Avg loss: 0.054
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1200, Avg loss: 0.070
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1300, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1400, Avg loss: 0.056
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1500, Avg loss: 0.066
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1600, Avg loss: 0.040
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1700, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1800, Avg loss: 0.044
labelsname: label_Consolidation, Epoch id: 2, Training steps: 1900, Avg loss: 0.050
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2000, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2100, Avg loss: 0.027
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2200, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2300, Avg loss: 0.050
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2400, Avg loss: 0.047
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2500, Avg loss: 0.050
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2600, Avg loss: 0.051
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2700, Avg loss: 0.049
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2800, Avg loss: 0.040
labelsname: label_Consolidation, Epoch id: 2, Training steps: 2900, Avg loss: 0.039
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3000, Avg loss: 0.056
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3100, Avg loss: 0.046
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3200, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3300, Avg loss: 0.052
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3400, Avg loss: 0.050
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3500, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3600, Avg loss: 0.054
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3700, Avg loss: 0.061
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3800, Avg loss: 0.046
labelsname: label_Consolidation, Epoch id: 2, Training steps: 3900, Avg loss: 0.051
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4000, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4100, Avg loss: 0.055
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4200, Avg loss: 0.035
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4300, Avg loss: 0.044
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4400, Avg loss: 0.028
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4500, Avg loss: 0.059
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4600, Avg loss: 0.044
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4700, Avg loss: 0.027
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4800, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 2, Training steps: 4900, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5000, Avg loss: 0.035
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5100, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5200, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5300, Avg loss: 0.027
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5400, Avg loss: 0.060
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5500, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5600, Avg loss: 0.057
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5700, Avg loss: 0.025
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5800, Avg loss: 0.049
labelsname: label_Consolidation, Epoch id: 2, Training steps: 5900, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 2, Training steps: 6000, Avg loss: 0.033
labelsname: label_Consolidation, Epoch id: 2, Training steps: 6100, Avg loss: 0.030
labelsname: label_Consolidation, Epoch id: 2, Training steps: 6200, Avg loss: 0.039
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Consolidation, Label_value 0: 0.995, 0.995, 0.995
labelsname: label_Consolidation, Label_value 1: 0.940, 0.940, 0.940
labelsname: label_Consolidation, Label_value 2: 0.961, 0.961, 0.961
labelsname: label_Consolidation, Label_value 3: 0.904, 0.904, 0.904
Acc. (Correct/Total): 0.9898 (32785/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[29565, 73, 41, 4],
[ 2, 1530, 24, 101],
[ 5, 34, 1126, 8],
[ 2, 52, 12, 545]])
Report precision, recall, and f1:
labelsname: label_Consolidation, Label_value 0: 0.996, 0.996, 0.996
labelsname: label_Consolidation, Label_value 1: 0.923, 0.923, 0.923
labelsname: label_Consolidation, Label_value 2: 0.960, 0.960, 0.960
labelsname: label_Consolidation, Label_value 3: 0.892, 0.892, 0.892
Acc. (Correct/Total): 0.9892 (32766/33124)
labelsname: label_Consolidation, Epoch id: 3, Training steps: 100, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 3, Training steps: 200, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 3, Training steps: 300, Avg loss: 0.053
labelsname: label_Consolidation, Epoch id: 3, Training steps: 400, Avg loss: 0.030
labelsname: label_Consolidation, Epoch id: 3, Training steps: 500, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 3, Training steps: 600, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 3, Training steps: 700, Avg loss: 0.042
labelsname: label_Consolidation, Epoch id: 3, Training steps: 800, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 3, Training steps: 900, Avg loss: 0.060
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1000, Avg loss: 0.031
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1100, Avg loss: 0.046
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1200, Avg loss: 0.056
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1300, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1400, Avg loss: 0.045
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1500, Avg loss: 0.047
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1600, Avg loss: 0.032
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1700, Avg loss: 0.021
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1800, Avg loss: 0.040
labelsname: label_Consolidation, Epoch id: 3, Training steps: 1900, Avg loss: 0.040
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2000, Avg loss: 0.039
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2100, Avg loss: 0.018
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2200, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2300, Avg loss: 0.042
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2400, Avg loss: 0.035
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2500, Avg loss: 0.039
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2600, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2700, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2800, Avg loss: 0.033
labelsname: label_Consolidation, Epoch id: 3, Training steps: 2900, Avg loss: 0.025
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3000, Avg loss: 0.045
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3100, Avg loss: 0.038
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3200, Avg loss: 0.037
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3300, Avg loss: 0.039
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3400, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3500, Avg loss: 0.032
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3600, Avg loss: 0.048
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3700, Avg loss: 0.047
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3800, Avg loss: 0.034
labelsname: label_Consolidation, Epoch id: 3, Training steps: 3900, Avg loss: 0.042
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4000, Avg loss: 0.027
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4100, Avg loss: 0.041
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4200, Avg loss: 0.026
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4300, Avg loss: 0.032
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4400, Avg loss: 0.023
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4500, Avg loss: 0.049
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4600, Avg loss: 0.031
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4700, Avg loss: 0.018
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4800, Avg loss: 0.025
labelsname: label_Consolidation, Epoch id: 3, Training steps: 4900, Avg loss: 0.029
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5000, Avg loss: 0.026
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5100, Avg loss: 0.033
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5200, Avg loss: 0.044
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5300, Avg loss: 0.020
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5400, Avg loss: 0.043
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5500, Avg loss: 0.033
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5600, Avg loss: 0.044
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5700, Avg loss: 0.020
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5800, Avg loss: 0.035
labelsname: label_Consolidation, Epoch id: 3, Training steps: 5900, Avg loss: 0.034
labelsname: label_Consolidation, Epoch id: 3, Training steps: 6000, Avg loss: 0.028
labelsname: label_Consolidation, Epoch id: 3, Training steps: 6100, Avg loss: 0.023
labelsname: label_Consolidation, Epoch id: 3, Training steps: 6200, Avg loss: 0.026
Start evaluation on test dataset.
Loading sentences from ./datasets/CheXpert/impression/validation.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
labelsname: label_Consolidation, Label_value 0: 0.995, 0.995, 0.995
labelsname: label_Consolidation, Label_value 1: 0.942, 0.942, 0.942
labelsname: label_Consolidation, Label_value 2: 0.983, 0.983, 0.983
labelsname: label_Consolidation, Label_value 3: 0.877, 0.877, 0.877
Acc. (Correct/Total): 0.9901 (32797/33124)
Start evaluation on evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[29561, 71, 39, 4],
[ 5, 1532, 26, 79],
[ 5, 20, 1125, 5],
[ 3, 66, 13, 570]])
Report precision, recall, and f1:
labelsname: label_Consolidation, Label_value 0: 0.996, 0.996, 0.996
labelsname: label_Consolidation, Label_value 1: 0.933, 0.933, 0.933
labelsname: label_Consolidation, Label_value 2: 0.974, 0.974, 0.974
labelsname: label_Consolidation, Label_value 3: 0.874, 0.874, 0.874
Acc. (Correct/Total): 0.9899 (32788/33124)
Final evaluation on the evaluation dataset.
Loading sentences from ./datasets/CheXpert/impression/test.csv
There are 33124 sentence in total. We use 1 processes to inject knowledge into sentences.
Progress of process 0: 0/33124
Progress of process 0: 10000/33124
Progress of process 0: 20000/33124
Progress of process 0: 30000/33124
The number of evaluation instances: 33124
Confusion matrix of {label_name}:
tensor([[29560, 71, 40, 4],
[ 6, 1532, 26, 79],
[ 5, 20, 1124, 5],
[ 3, 66, 13, 570]])
Report precision, recall, and f1:
labelsname: label_Consolidation, Label_value 0: 0.996, 0.996, 0.996
labelsname: label_Consolidation, Label_value 1: 0.932, 0.932, 0.932
labelsname: label_Consolidation, Label_value 2: 0.974, 0.974, 0.974
labelsname: label_Consolidation, Label_value 3: 0.874, 0.874, 0.874
Acc. (Correct/Total): 0.9898 (32786/33124)