-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
92 lines (76 loc) · 3 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import nn
from ppocr.modeling.heads.rec_ctc_head import get_para_bias_attr
class Im2Seq(nn.Layer):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.out_channels = in_channels
def forward(self, x):
B, C, H, W = x.shape
assert H == 1
x = x.squeeze(axis=2)
x = x.transpose([0, 2, 1]) # (NTC)(batch, width, channels)
return x
class EncoderWithRNN(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithRNN, self).__init__()
self.out_channels = hidden_size * 2
self.lstm = nn.LSTM(
in_channels, hidden_size, direction='bidirectional', num_layers=2)
def forward(self, x):
x, _ = self.lstm(x)
return x
class EncoderWithFC(nn.Layer):
def __init__(self, in_channels, hidden_size):
super(EncoderWithFC, self).__init__()
self.out_channels = hidden_size
weight_attr, bias_attr = get_para_bias_attr(
l2_decay=0.00001, k=in_channels, name='reduce_encoder_fea')
self.fc = nn.Linear(
in_channels,
hidden_size,
weight_attr=weight_attr,
bias_attr=bias_attr,
name='reduce_encoder_fea')
def forward(self, x):
x = self.fc(x)
return x
class SequenceEncoder(nn.Layer):
def __init__(self, in_channels, encoder_type, hidden_size=48, **kwargs):
super(SequenceEncoder, self).__init__()
self.encoder_reshape = Im2Seq(in_channels)
self.out_channels = self.encoder_reshape.out_channels
if encoder_type == 'reshape':
self.only_reshape = True
else:
support_encoder_dict = {
'reshape': Im2Seq,
'fc': EncoderWithFC,
'rnn': EncoderWithRNN
}
assert encoder_type in support_encoder_dict, '{} must in {}'.format(
encoder_type, support_encoder_dict.keys())
self.encoder = support_encoder_dict[encoder_type](
self.encoder_reshape.out_channels, hidden_size)
self.out_channels = self.encoder.out_channels
self.only_reshape = False
def forward(self, x):
x = self.encoder_reshape(x)
if not self.only_reshape:
x = self.encoder(x)
return x