-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNeuralNetwork.py
executable file
·120 lines (85 loc) · 4.79 KB
/
NeuralNetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
class NeuralNetwork(object):
def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
# Set number of nodes in input, hidden and output layers.
self.input_nodes = input_nodes
self.hidden_nodes = hidden_nodes
self.output_nodes = output_nodes
# Initialize weights
self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5,
(self.input_nodes, self.hidden_nodes))
self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5,
(self.hidden_nodes, self.output_nodes))
self.lr = learning_rate
self.activation_function = lambda x : (1/(1+np.exp(-x)))
def train(self, features, targets):
''' Train the network on batch of features and targets.
Arguments
---------
features: 2D array, each row is one data record, each column is a feature
targets: 1D array of target values
'''
n_records = features.shape[0]
delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
for X, y in zip(features, targets):
final_outputs, hidden_outputs = self.forward_pass_train(X)
delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y,
delta_weights_i_h, delta_weights_h_o)
self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records)
def forward_pass_train(self, X):
''' The forward pass while training
Arguments
---------
X: features batch
'''
hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
return final_outputs, hidden_outputs
def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o):
''' The backpropagation implementation
Arguments
---------
final_outputs: output from forward pass
y: target (i.e. label) batch
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
'''
error = y-final_outputs # Output layer error is the difference between desired target and actual output.
# The hidden layer's contribution to the error
hidden_error = np.dot(self.weights_hidden_to_output, error)
#Backpropagated error terms
output_error_term = error * 1
hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs)
# Weight step (input to hidden)
delta_weights_i_h += hidden_error_term * X[:,None]
# Weight step (hidden to output)
delta_weights_h_o += (output_error_term * hidden_outputs[:,None])
return delta_weights_i_h, delta_weights_h_o
def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records):
''' Update weights on gradient descent step
Arguments
---------
delta_weights_i_h: change in weights from input to hidden layers
delta_weights_h_o: change in weights from hidden to output layers
n_records: number of records
'''
# update hidden-to-output weights with gradient descent step
self.weights_hidden_to_output += self.lr * delta_weights_h_o/n_records
# update input-to-hidden weights with gradient descent step
self.weights_input_to_hidden += self.lr * delta_weights_i_h/n_records
def run(self, features):
''' Run a forward pass through the network with input features
Arguments
---------
features: 1D array of feature values
'''
#Hidden layer
hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer
hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
#Output layer
final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
final_outputs = final_inputs # signals from final output layer
return final_outputs