forked from ai4ce/DiscoNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_codet.py
307 lines (266 loc) · 13.7 KB
/
train_codet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
'''
/************************************************************************
MIT License
Copyright (c) 2021 AI4CE Lab@NYU, MediaBrain Group@SJTU
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*************************************************************************/
/**
* @file train_codet.py
* @author YIMING LI (https://roboticsyimingli.github.io/)
* @date 10/10/2021
* @version 1.0
*
* @brief Training Pipeline of Collaborative BEV Detection
*
* @section DESCRIPTION
*
* This is official implementation for: NeurIPS 2021 Learning Distilled Collaboration Graph for Multi-Agent Perception
*
*/
'''
import numpy as np
import torch
import torch.optim as optim
import argparse
from tqdm import tqdm
from utils.CoDetModel import *
from utils.CoDetModule import *
from utils.loss import *
from data.Dataset import V2XSIMDataset
from data.config import Config, ConfigGlobal
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def check_folder(folder_path):
if not os.path.exists(folder_path):
os.mkdir(folder_path)
return folder_path
def main(args):
config = Config('train', binary=True, only_det=True)
config_global = ConfigGlobal('train', binary=True, only_det=True)
num_epochs = args.nepoch
need_log = args.log
num_workers = args.nworker
start_epoch = 1
batch_size = args.batch
# Specify gpu device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device_num = torch.cuda.device_count()
print("device number", device_num)
if args.bound == 'upperbound':
flag = 'upperbound'
elif args.bound == 'lowerbound':
if args.com == 'when2com':
if args.warp_flag:
flag = 'when2com_warp'
else:
flag = 'when2com'
elif args.com == 'v2v':
flag = 'v2v'
elif args.com == 'disco':
flag = 'disco'
elif args.com == 'sum':
flag = 'sum'
elif args.com == 'mean':
flag = 'mean'
elif args.com == 'max':
flag = 'max'
elif args.com == 'cat':
flag = 'cat'
elif args.com == 'agent':
flag = 'agent'
else:
flag = 'lowerbound'
else:
raise ValueError('not implement')
config.flag = flag
trainset = V2XSIMDataset(dataset_roots=[f'{args.data}/agent{i}' for i in range(5)], config=config, config_global=config_global, split='train')
trainloader = torch.utils.data.DataLoader(trainset, shuffle=True, batch_size=batch_size, num_workers=num_workers)
print("Training dataset size:", len(trainset))
logger_root = args.logpath if args.logpath != '' else 'logs'
if args.com == '':
model = FaFNet(config)
elif args.com == 'when2com':
model = When2com(config, layer=args.layer, warp_flag=args.warp_flag)
elif args.com == 'v2v':
model = V2VNet(config, gnn_iter_times=args.gnn_iter_times, layer=args.layer, layer_channel=256)
elif args.com == 'disco':
model = DiscoNet(config, layer=args.layer, kd_flag=args.kd_flag)
elif args.com == 'sum':
model = SumFusion(config, layer=args.layer, kd_flag=args.kd_flag)
elif args.com == 'mean':
model = MeanFusion(config, layer=args.layer, kd_flag=args.kd_flag)
elif args.com == 'max':
model = MaxFusion(config, layer=args.layer, kd_flag=args.kd_flag)
elif args.com == 'cat':
model = CatFusion(config, layer=args.layer, kd_flag=args.kd_flag)
elif args.com == 'agent':
model = AgentwiseWeightedFusion(config, layer=args.layer, kd_flag=args.kd_flag)
model = nn.DataParallel(model)
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
criterion = {'cls': SoftmaxFocalClassificationLoss(), 'loc': WeightedSmoothL1LocalizationLoss()}
if args.kd_flag == 1:
teacher = TeacherNet(config)
teacher = nn.DataParallel(teacher)
teacher = teacher.to(device)
fafmodule = FaFModule(model, teacher, config, optimizer, criterion, args.kd_flag)
checkpoint_teacher = torch.load(args.resume_teacher)
start_epoch_teacher = checkpoint_teacher['epoch']
fafmodule.teacher.load_state_dict(checkpoint_teacher['model_state_dict'])
print("Load teacher model from {}, at epoch {}".format(args.resume_teacher, start_epoch_teacher))
fafmodule.teacher.eval()
else:
fafmodule = FaFModule(model, model, config, optimizer, criterion, args.kd_flag)
if args.resume == '':
model_save_path = check_folder(logger_root)
model_save_path = check_folder(os.path.join(model_save_path, flag))
log_file_name = os.path.join(model_save_path, 'log.txt')
saver = open(log_file_name, "w")
saver.write("GPU number: {}\n".format(torch.cuda.device_count()))
saver.flush()
# Logging the details for this experiment
saver.write("command line: {}\n".format(" ".join(sys.argv[0:])))
saver.write(args.__repr__() + "\n\n")
saver.flush()
else:
model_save_path = args.resume[:args.resume.rfind('/')]
log_file_name = os.path.join(model_save_path, 'log.txt')
saver = open(log_file_name, "a")
saver.write("GPU number: {}\n".format(torch.cuda.device_count()))
saver.flush()
# Logging the details for this experiment
saver.write("command line: {}\n".format(" ".join(sys.argv[1:])))
saver.write(args.__repr__() + "\n\n")
saver.flush()
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch'] + 1
fafmodule.model.load_state_dict(checkpoint['model_state_dict'])
fafmodule.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
fafmodule.scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
print("Load model from {}, at epoch {}".format(args.resume, start_epoch - 1))
for epoch in range(start_epoch, num_epochs + 1):
lr = fafmodule.optimizer.param_groups[0]['lr']
print("Epoch {}, learning rate {}".format(epoch, lr))
if need_log:
saver.write("epoch: {}, lr: {}\t".format(epoch, lr))
saver.flush()
running_loss_disp = AverageMeter('Total loss', ':.6f')
running_loss_class = AverageMeter('classification Loss', ':.6f') # for cell classification error
running_loss_loc = AverageMeter('Localization Loss', ':.6f') # for state estimation error
fafmodule.model.train()
t = tqdm(trainloader)
for sample in t:
padded_voxel_point_list, padded_voxel_points_teacher_list, label_one_hot_list, reg_target_list, reg_loss_mask_list, anchors_map_list, vis_maps_list,\
target_agent_id_list, num_agent_list, trans_matrices_list = zip(*sample)
trans_matrices = torch.stack(tuple(trans_matrices_list), 1)
target_agent_id = torch.stack(tuple(target_agent_id_list), 1)
num_agent = torch.stack(tuple(num_agent_list), 1)
if flag == 'upperbound':
padded_voxel_point = torch.cat(tuple(padded_voxel_points_teacher_list), 0)
else:
padded_voxel_point = torch.cat(tuple(padded_voxel_point_list), 0)
label_one_hot = torch.cat(tuple(label_one_hot_list), 0)
reg_target = torch.cat(tuple(reg_target_list), 0)
reg_loss_mask = torch.cat(tuple(reg_loss_mask_list), 0)
anchors_map = torch.cat(tuple(anchors_map_list), 0)
vis_maps = torch.cat(tuple(vis_maps_list), 0)
data = {}
data['bev_seq'] = padded_voxel_point.to(device) # [batch, agent_num, 1, 256, 256, 13] [batch*agent, 1, 256, 256, 13]
data['labels'] = label_one_hot.to(device)
data['reg_targets'] = reg_target.to(device)
data['anchors'] = anchors_map.to(device)
data['reg_loss_mask'] = reg_loss_mask.to(device).type(dtype=torch.bool)
data['vis_maps'] = vis_maps.to(device)
data['target_agent_ids'] = target_agent_id.to(device)
data['num_agent'] = num_agent.to(device)
data['trans_matrices'] = trans_matrices # [batch, agent_num, 5, 4, 4]
if args.kd_flag == 1:
padded_voxel_points_teacher = torch.cat(tuple(padded_voxel_points_teacher_list), 0)
data['bev_seq_teacher'] = padded_voxel_points_teacher.to(device)
data['kd_weight'] = args.kd_weight
loss, cls_loss, loc_loss = fafmodule.step(data, batch_size)
running_loss_disp.update(loss)
running_loss_class.update(cls_loss)
running_loss_loc.update(loc_loss)
if np.isnan(loss) or np.isnan(cls_loss) or np.isnan(loc_loss):
print(f'Epoch {epoch}, loss is nan: {loss}, {cls_loss} {loc_loss}')
sys.exit();
t.set_description("Epoch {}, lr {}".format(epoch, lr))
t.set_postfix(cls_loss=running_loss_class.avg, loc_loss=running_loss_loc.avg)
fafmodule.scheduler.step()
# save model
if need_log:
saver.write("{}\t{}\t{}\n".format(running_loss_disp, running_loss_class, running_loss_loc))
saver.flush()
if config.MGDA:
save_dict = {'epoch': epoch,
'encoder_state_dict': fafmodule.encoder.state_dict(),
'optimizer_encoder_state_dict': fafmodule.optimizer_encoder.state_dict(),
'scheduler_encoder_state_dict': fafmodule.scheduler_encoder.state_dict(),
'head_state_dict': fafmodule.head.state_dict(),
'optimizer_head_state_dict': fafmodule.optimizer_head.state_dict(),
'scheduler_head_state_dict': fafmodule.scheduler_head.state_dict(),
'loss': running_loss_disp.avg}
else:
save_dict = {'epoch': epoch,
'model_state_dict': fafmodule.model.state_dict(),
'optimizer_state_dict': fafmodule.optimizer.state_dict(),
'scheduler_state_dict': fafmodule.scheduler.state_dict(),
'loss': running_loss_disp.avg}
torch.save(save_dict, os.path.join(model_save_path, 'epoch_' + str(epoch) + '.pth'))
if need_log:
saver.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data', default=None, type=str, help='The path to the preprocessed sparse BEV training data')
parser.add_argument('--batch', default=4, type=int, help='Batch size')
parser.add_argument('--nepoch', default=100, type=int, help='Number of epochs')
parser.add_argument('--nworker', default=2, type=int, help='Number of workers')
parser.add_argument('--lr', default=0.001, type=float, help='Initial learning rate')
parser.add_argument('--log', action='store_true', help='Whether to log')
parser.add_argument('--logpath', default='./final-2nd', help='The path to the output log file')
parser.add_argument('--resume', default='', type=str, help='The path to the saved model that is loaded to resume training')
parser.add_argument('--resume_teacher', default='', type=str, help='The path to the saved teacher model that is loaded to resume training')
parser.add_argument('--layer', default=3, type=int, help='Communicate which layer in the single layer com mode')
parser.add_argument('--warp_flag', action='store_true', help='Whether to use pose info for When2com')
parser.add_argument('--kd_flag', default=0, type=int, help='Whether to enable distillation (only DiscNet is 1 )')
parser.add_argument('--kd_weight', default=100000, type=int, help='KD loss weight')
parser.add_argument('--gnn_iter_times', default=3, type=int, help='Number of message passing for V2VNet')
parser.add_argument('--visualization', default=True, help='Visualize validation result')
parser.add_argument('--com', default='', type=str, help='disco/when2com/v2v/sum/mean/max/cat/agent')
parser.add_argument('--bound', type=str, help='The input setting: lowerbound -> single-view or upperbound -> multi-view')
torch.multiprocessing.set_sharing_strategy('file_system')
args = parser.parse_args()
print(args)
main(args)