forked from x4nth055/pythoncode-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_selection.py
59 lines (41 loc) · 1.5 KB
/
feature_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.feature_selection import SelectKBest,chi2,RFE
from sklearn.ensemble import RandomForestClassifier
df = pd.read_csv("data/Heart_Disease_Prediction.csv")
print(df.shape)
df.head(5)
# %%
label = df["Heart Disease"]
df.drop("Heart Disease", axis=1, inplace=True)
# %%
print(label.value_counts())
label.value_counts().plot(kind="bar")
# %%
categorical_features = ["Sex", "Chest pain type", "FBS over 120", "EKG results", "Exercise angina", "Slope of ST", "Number of vessels fluro", "Thallium"]
df[categorical_features] = df[categorical_features].astype("category")
# %%
continuous_features = set(df.columns) - set(categorical_features)
scaler = MinMaxScaler()
df_norm = df.copy()
df_norm[list(continuous_features)] = scaler.fit_transform(df[list(continuous_features)])
# %%
X_new = SelectKBest(k=5, score_func=chi2).fit_transform(df_norm, label)
X_new
# %%
rfe = RFE(estimator=RandomForestClassifier(), n_features_to_select=5)
X_new = rfe.fit_transform(df_norm, label)
X_new
# %%
clf = RandomForestClassifier()
clf.fit(df_norm, label)
# create a figure to plot a bar, where x axis is features, and Y indicating the importance of each feature
plt.figure(figsize=(12,12))
plt.bar(df_norm.columns, clf.feature_importances_)
plt.xticks(rotation=45)