-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdl_second_test.py
188 lines (153 loc) · 6.29 KB
/
dl_second_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from dl_basic_function import load_dataset
import math
# region Description # Input data and print something
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
train_num = train_set_x_orig.shape[0]
test_num = test_set_x_orig.shape[0]
pix_num = train_set_x_orig.shape[1]
chanel_num = train_set_x_orig.shape[3]
print('\n' + '---------------Input information---------------' + '\n')
print('train_set_x_orig.shape = ' + str(train_set_x_orig.shape))
print('train_set_y.shape = ' + str(train_set_y.shape))
print('test_set_x_orig.shape = ' + str(test_set_x_orig.shape))
print('test_set_y.shape = ' + str(test_set_y.shape))
print('train_num = ' + str(train_num))
print('test_num = ' + str(test_num))
print('pix_num = ' + str(pix_num))
print('chanel_num = ' + str(chanel_num))
# Reshape data
train_set_x_flat = train_set_x_orig.reshape(train_num, -1).T
test_set_x_flat = test_set_x_orig.reshape(test_num, -1).T
print('\n' + '---------------After reshaping---------------' + '\n')
print('train_set_x_flat = ' + str(train_set_x_flat.shape))
print('test_set_x_flat = ' + str(train_set_x_flat.shape))
# Standarize data
train_set_x = train_set_x_flat / 255.0
test_set_x = test_set_x_flat / 255.0
print('\n' + '---------------After Standaring---------------' + '\n')
print('Check for traindata = ' + str(train_set_x[0:5, 0]))
print('Check for testdata = ' + str(test_set_x[0:5, 0]))
# endregion
# region Description //some usefull function
def sigmoid(Z):
s = 1.0 / (1.0 + np.exp(-Z))
return s
def sigmoid_prime(Z):
s = sigmoid(Z) * (1 - sigmoid(Z))
return s
def tanh(x):
s = (np.exp(x) - np.exp(-x)) / ((np.exp(x) + np.exp(-x)))
return s
def tanh_prime(x):
s = 1 - np.power(tanh(x), 2)
return s
def relu(Z):
s = np.maximum(0, Z)
return s
def relu_prime(Z):
s = Z
s[Z <= 0] = 0
s[Z > 0] = 1
return s
def initial_weights(layer):
# layer :[nx, n1, n2, ... nL]
np.random.seed(2)
L = len(layer)
parameters = {}
for l in range(1,L):
parameters["W"+str(l)] = np.random.randn(layer[l], layer[l-1])*np.sqrt(2.0/layer[l-1])
parameters["b"+str(l)] = np.zeros((layer[l],1))
return parameters
# endregion %%
def train(X, Y, layer, learning_rate=0.0075, itr_num=3000, isprint=True):
'''''
Input:
X: training dataset with shape(nx,m)
Y: training dataset with shape(1,m)
learning_rate: default with 0.0075
itr_num: max number of iteration
isprint: print cost(True) or not(False)
Output:
parameters : dict data{"W1","b1",...,"WL","bL"},include final weights
'''''
m = Y.shape[1] # number of training set
Fcahe = {} # Save forward propagation variable(Z,A)
Bcahe = {} # Save backward propagation variable(dZ,dW,db)
costs = [] # Save cost series to plot
Fcahe["A" + str(0)] = X # Set X as A0
parameters = initial_weights(layer) # Initial weights
L = len(parameters) // 2 # Layers of neural netwoek
for itr in range(itr_num):
# Forward propagation
for l in range(1, L):
Fcahe["Z" + str(l)] = np.dot(parameters["W" + str(l)], Fcahe["A" + str(l - 1)]) + parameters["b" + str(l)]
Fcahe["A" + str(l)] = relu(Fcahe["Z" + str(l)])
Fcahe["Z" + str(L)] = np.dot(parameters["W" + str(L)], Fcahe["A" + str(L - 1)]) + parameters["b" + str(L)]
Fcahe["A" + str(L)] = sigmoid(Fcahe["Z" + str(L)])
cost = -(1.0 / m) * np.sum(Y * np.log(Fcahe["A" + str(L)]) + (1 - Y) * np.log(1 - Fcahe["A" + str(L)]))
cost = np.squeeze(cost)
# Backward propagation
Bcahe["dZ" + str(L)] = (-(
np.divide(Y, Fcahe["A" + str(L)]) - np.divide(1 - Y, 1 - Fcahe["A" + str(L)]))) * sigmoid_prime(
Fcahe["Z" + str(L)])
Bcahe["dW" + str(L)] = (1.0 / m) * np.dot(Bcahe["dZ" + str(L)], Fcahe["A" + str(L - 1)].T)
Bcahe["db" + str(L)] = (1.0 / m) * np.sum(Bcahe["dZ" + str(L)], axis=1, keepdims=True)
for l in reversed(range(L - 1)):
Bcahe["dZ" + str(l + 1)] = np.dot(parameters["W" + str(l + 2)].T, Bcahe["dZ" + str(l + 2)]) * relu_prime(
Fcahe["Z" + str(l + 1)])
Bcahe["dW" + str(l + 1)] = (1.0 / m) * np.dot(Bcahe["dZ" + str(l + 1)], Fcahe["A" + str(l)].T)
Bcahe["db" + str(l + 1)] = (1.0 / m) * np.sum(Bcahe["dZ" + str(l + 1)], axis=1, keepdims=True)
# Update weights
for l in range(L):
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * Bcahe["dW" + str(l + 1)]
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * Bcahe["db" + str(l + 1)]
if isprint and itr % 200 == 0:
print('cost after ' + str(itr) + ' iteration is :' + str(cost))
costs.append(cost)
# Plot the cost curve vary with itr_num
plt.plot(np.squeeze(costs))
plt.xlabel("itr_num(per hundred)")
plt.ylabel("cost")
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
def predict(X, Y, parameters):
'''''
Input:
X: test dataset with shape(nx,m)
Y: test dataset with shape(1,m)
parameters : dict data{"W1","b1",...,"WL","bL"}
Output:
pred: predicted labels of test dataset
'''''
num = X.shape[1]
pred = np.zeros((1, num))
L = len(parameters) // 2
A0 = X
for l in range(1, L):
Z = np.dot(parameters["W" + str(l)], A0) + parameters["b" + str(l)]
A = relu(Z)
A0 = A
Z = np.dot(parameters["W" + str(L)], A0) + parameters["b" + str(L)]
A = sigmoid(Z)
for i in range(A.shape[1]):
if A[0, i] <= 0.5:
pred[0, i] = 0
else:
pred[0, i] = 1
print("accuracy:{}%".format(100 - np.mean(np.abs(pred - Y)) * 100))
return pred
parameters = train(train_set_x, train_set_y, [12288, 1], learning_rate=0.01, itr_num=3000)
test_pred = predict(test_set_x, test_set_y, parameters)
'''
parameters = train(train_set_x, train_set_y, [12288, 5, 1], learning_rate=0.01, itr_num=3000)
test_pred = predict(test_set_x, test_set_y, parameters)
parameters = train(train_set_x, train_set_y, [12288, 20, 5, 1], learning_rate=0.01, itr_num=3000)
test_pred = predict(test_set_x, test_set_y, parameters)
'''