diff --git a/LDMP/localexecution/ldn_numba.py b/LDMP/localexecution/ldn_numba.py index f9ee7cc23..2295ae467 100644 --- a/LDMP/localexecution/ldn_numba.py +++ b/LDMP/localexecution/ldn_numba.py @@ -54,7 +54,7 @@ def calc_cell_area(ymin, ymax, x_width): * (x_width / 360.)) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('recode_traj', 'i2[:,:](i2[:,:])') def recode_traj(x): # Recode trajectory into deg, stable, imp. Capture trends that are at least @@ -77,7 +77,7 @@ def recode_traj(x): return np.reshape(x, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('recode_state', 'i2[:,:](i2[:,:])') def recode_state(x): # Recode state into deg, stable, imp. Note the >= -10 is so no data @@ -91,7 +91,7 @@ def recode_state(x): return np.reshape(x, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('calc_prod_5', 'i2[:,:](i2[:,:], i2[:,:], i2[:,:])') def calc_prod5(traj, state, perf): # Coding of LPD (prod5) @@ -124,12 +124,14 @@ def calc_prod5(traj, state, perf): x[(traj == 0) & (state == -1) & (perf == 0)] = 2 # Ensure NAs carry over to productivity indicator layer - x[(traj == NODATA_VALUE) | (perf == NODATA_VALUE) | (state == NODATA_VALUE)] = NODATA_VALUE + x[(traj == NODATA_VALUE) | + (perf == NODATA_VALUE) | + (state == NODATA_VALUE)] = NODATA_VALUE return np.reshape(x, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('pro5_to_prod3', 'i2[:,:](i2[:,:])') def prod5_to_prod3(prod5): shp = prod5.shape @@ -143,7 +145,6 @@ def prod5_to_prod3(prod5): @numba.jit( nopython=True, - parallel=True, locals={'a_trans_bl_tg': numba.types.int16[::1]} ) @cc.export('calc_lc_trans', 'i2[:,:](i2[:,:], i2[:,:])') @@ -156,7 +157,7 @@ def calc_lc_trans(lc_bl, lc_tg): return np.reshape(a_trans_bl_tg, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('recode_deg_soc', 'i2[:,:](i2[:,:], i2[:,:])') def recode_deg_soc(soc, water): '''recode SOC change layer from percent change into a categorical map''' @@ -173,7 +174,7 @@ def recode_deg_soc(soc, water): return np.reshape(out, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('calc_deg_soc', 'i2[:,:](i2[:,:], i2[:,:], i2[:,:])') def calc_deg_soc(soc_bl, soc_tg, water): '''recode SOC change layer from percent change into a categorical map''' @@ -195,7 +196,6 @@ def calc_deg_soc(soc_bl, soc_tg, water): @numba.jit( nopython=True, - parallel=True, locals={'trans': numba.types.int16[::1]} ) @cc.export('calc_deg_lc', 'i2[:,:](i2[:,:], i2[:,:], i2[:], i2[:])') @@ -213,7 +213,7 @@ def calc_deg_lc(lc_bl, lc_tg, trans_code, trans_meaning): return np.reshape(out, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('calc_deg_sdg', 'i2[:,:](i2[:,:], i2[:,:], i2[:,:])') def calc_deg_sdg(deg_prod3, deg_lc, deg_soc): shp = deg_prod3.shape @@ -239,7 +239,7 @@ def calc_deg_sdg(deg_prod3, deg_lc, deg_soc): return np.reshape(out, shp) -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('zonal_total', '(i2[:,:], f8[:,:], i2[:,:])') def zonal_total(z, d, mask): z = z.ravel() @@ -258,7 +258,7 @@ def zonal_total(z, d, mask): return totals -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('zonal_total_weighted', '(i2[:,:], i2[:,:], f8[:,:], i2[:,:])') def zonal_total_weighted(z, d, weights, mask): z = z.ravel() @@ -278,7 +278,7 @@ def zonal_total_weighted(z, d, weights, mask): return totals -@numba.jit(nopython=True, parallel=True) +@numba.jit(nopython=True) @cc.export('bizonal_total', '(i2[:,:], i2[:,:], f8[:,:], i2[:,:])') def bizonal_total(z1, z2, d, mask): z1 = z1.ravel()