-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathscrape.py
executable file
·416 lines (347 loc) · 13.1 KB
/
scrape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python
# vim: set fileencoding=utf-8 :
# Copyright (c) 2015 Code for Karlsruhe (http://codefor.de/karlsruhe)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Scraper for renting costs in Karlsruhe.
"""
from __future__ import division, unicode_literals
import cgi
import codecs
import contextlib
import errno
import functools
import json
import os
import pickle
import re
import sqlite3
import time
import urllib2
from bs4 import BeautifulSoup
from geopy.geocoders import Nominatim
# Immobilienscout24 URLs for listings in Karlsruhe
BASE_URL = 'http://www.immobilienscout24.de/Suche/S-T/Wohnung-Miete/Baden-Wuerttemberg/Karlsruhe'
PAGE_URL = 'http://www.immobilienscout24.de/Suche/S-T/P-%d/Wohnung-Miete/Baden-Wuerttemberg/Karlsruhe?pagerReporting=true'
@contextlib.contextmanager
def prepare_database(filename):
"""
Context manager that provides a database.
"""
db = sqlite3.connect(filename)
db.execute('''
CREATE TABLE IF NOT EXISTS listings (
id TEXT PRIMARY KEY,
street TEXT,
number TEXT,
suburb TEXT,
rent REAL,
area REAL,
latitude REAL,
longitude REAL,
date DATE DEFAULT CURRENT_TIMESTAMP
) WITHOUT ROWID;
''')
db.row_factory = sqlite3.Row
try:
yield db
finally:
db.close()
def store_listings(db, listings):
"""
Store listings in database.
Listings already contained in the database are ignored.
Returns the number of listings that were stored.
"""
cursor = db.cursor()
tuples = [(x, y['street'], y['number'], y['suburb'], y['rent'],
y['area']) for x, y in listings.iteritems()]
sql = '''INSERT OR IGNORE INTO listings (id, street, number, suburb, rent,
area) VALUES (?, ?, ?, ?, ?, ?);'''
cursor.executemany(sql, tuples)
db.commit()
return cursor.rowcount
def download_as_unicode(url):
"""
Download document at URL and return it as a Unicode string.
"""
request = urllib2.urlopen(url)
return unicode(request.read(), request.headers.getparam('charset'))
def get_page(number):
"""
Get a result page.
The return value is a ``BeautifulSoup`` instance.
"""
if number == 1:
url = BASE_URL
else:
url = PAGE_URL % number
data = download_as_unicode(url)
return BeautifulSoup(data, 'html.parser')
def parse_german_float(s):
"""
Parse a German float string.
German uses a dot for the thousands separator and a comma for the
decimal mark.
"""
return float(s.replace('.', '').replace(',', '.'))
def parse_address(address):
"""
Parse an address string into street, house number, and suburb.
"""
fields = [s.strip() for s in address.split(',')]
if len(fields) == 2:
street = None
number = None
suburb = fields[0]
else:
street, number = fields[0].rsplit(' ', 1)
street = re.sub(r'([Ss])(trasse|tr.)\Z', r'\1traße', street)
suburb = fields[1]
return (street, number, suburb)
def extract_listings(soup):
"""
Extract individual listings from a page.
Returns a dict that maps listing IDs to listing details.
"""
listings = {}
for div in soup.find_all('div', class_='resultlist_entry_data'):
for a in div.find_all('a'):
if a.get('href', '').startswith('/expose/'):
listing_id = a.get('href').split('/')[-1]
break
else:
# Couldn't find listing's ID
continue
street_span = div.find('span', class_='street')
if not street_span:
continue
street, number, suburb = parse_address(unicode(street_span.string))
for dd in div.find_all('dd', class_='value'):
content = unicode(dd.string).strip()
if content.endswith('€'):
rent = parse_german_float(content.split()[0])
elif content.endswith('m²'):
area = parse_german_float(content.split()[0])
listings[listing_id] = {
'street': street,
'number': number,
'suburb': suburb,
'rent': rent,
'area': area,
}
return listings
def extract_number_of_pages(soup):
"""
Extract the number of result pages from a result page.
"""
pager_span = soup.find('span', class_='smallPager')
return int(pager_span.string.split()[-1])
def rate_limited(calls=1, seconds=1):
"""
Decorator for rate limiting function calls.
Makes sure that the decorated function is executed at most ``calls``
times in ``seconds`` seconds. Calls to the decorated function which
exceed this limit are delayed as necessary.
"""
def decorator(f):
last_calls = []
@functools.wraps(f)
def wrapper(*args, **kwargs):
now = time.time()
last_calls[:] = [x for x in last_calls if now - x <= seconds]
if len(last_calls) >= calls:
if calls == 1:
delta = last_calls[-1] + seconds - now
else:
delta = last_calls[1] + seconds - now
time.sleep(delta)
last_calls.append(time.time())
return f(*args, **kwargs)
return wrapper
return decorator
def memoize_persistently(filename):
"""
Persistently memoize a function's return values.
This decorator memoizes a function's return values persistently
over multiple runs of the program. The return values are stored
in the given file using ``pickle``. If the decorated function is
called again with arguments that it has already been called with
then the return value is retrieved from the cache and returned
without calling the function. If the function is called with
previously unseen arguments then its return value is added to the
cache and the cache file is updated.
Both return values and arguments of the function must support the
pickle protocol. The arguments must also be usable as dictionary
keys.
"""
try:
with open(filename, 'rb') as cache_file:
cache = pickle.load(cache_file)
except IOError as e:
if e.errno != errno.ENOENT:
raise
cache = {}
def decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwargs):
key = args + tuple(sorted(kwargs.items()))
try:
return cache[key]
except KeyError:
value = cache[key] = f(*args, **kwargs)
with open(filename, 'wb') as cache_file:
pickle.dump(cache, cache_file)
return value
return wrapper
return decorator
_geolocator = Nominatim()
@memoize_persistently('address_location_cache.pickle')
@rate_limited()
def get_coordinates(address, timeout=5):
"""
Geolocate an address.
Returns the latitude and longitude of the given address using
OpenStreetMap's Nominatim service. If the coordinates of the
address cannot be found then ``(None, None)`` is returned.
As per Nominatim's terms of service this function is rate limited
to at most one call per second.
``timeout`` gives the timeout in seconds.
"""
location = _geolocator.geocode(address, timeout=timeout)
if not location:
return None, None
return location.latitude, location.longitude
def dump_json(data, filename):
"""
Dump data as JSON to file.
"""
with codecs.open(filename, 'w', encoding='utf8') as f:
json.dump(data, f, separators=(',', ':'))
def mkdirs(path):
"""
Recursively create directories.
Like ``os.makedirs``, but does not raise an error if the directory
already exists.
"""
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if __name__ == '__main__':
import argparse
import logging
import logging.handlers
import os.path
import sys
HERE = os.path.abspath(os.path.dirname(__file__))
DB_FILE = os.path.join(HERE, 'listings.sqlite')
EXPORT_DIR = os.path.join(HERE, 'export')
parser = argparse.ArgumentParser(description='Rent scraper')
parser.add_argument('--database', help='Database file', default=DB_FILE)
parser.add_argument('--export-dir', help='Output directory for ' +
'exported data', default=EXPORT_DIR)
parser.add_argument('--verbose', '-v', help='Output log to STDOUT',
default=False, action='store_true')
args = parser.parse_args()
args.database = os.path.abspath(args.database)
args.export_dir = os.path.abspath(args.export_dir)
marker_filename = os.path.join(args.export_dir, 'markers.json')
data_filename = os.path.join(args.export_dir, 'listings.json')
LOG_FILE = os.path.join(HERE, 'scrape.log')
logger = logging.getLogger()
formatter = logging.Formatter('[%(asctime)s] <%(levelname)s> %(message)s')
handler = logging.handlers.TimedRotatingFileHandler(
LOG_FILE, when='W0', backupCount=4, encoding='utf8')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
if args.verbose:
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info('Started')
logger.info('Using database "%s"' % args.database)
def get_new_listings(db):
num_pages = None
page_index = 1
while (not num_pages) or (page_index <= num_pages):
logger.info("Fetching page %d" % page_index)
page = get_page(page_index)
num_pages = num_pages or extract_number_of_pages(page)
listings = extract_listings(page)
new_count = store_listings(db, listings)
logger.info("Extracted %d listings (%d new)" % (len(listings),
new_count))
page_index += 1
def add_coordinates(db):
logger.info('Looking up address coordinates (this might take a while)')
c = db.cursor()
c.execute('''SELECT id, street, number, suburb FROM listings
WHERE (latitude IS NULL) AND (suburb NOT NULL) AND
(street NOT NULL) AND (number NOT NULL);''')
updates = []
for row in c:
id, street, number, suburb = row
address = '%s %s, %s, Karlsruhe' % (street, number, suburb)
coordinates = get_coordinates(address)
if coordinates[0] is not None:
updates.append((coordinates[0], coordinates[1], id))
c.executemany('''UPDATE listings SET latitude=?, longitude=? WHERE
id=?;''', updates)
db.commit()
rowcount = max(0, c.rowcount)
logger.info('Updated %d listings with coordinates' % rowcount)
def export_markers_to_json(db, filename):
"""
Export data points with known geolocation to JSON.
"""
logger.info('Exporting marker data to JSON file "%s"' % filename)
c = db.cursor()
c.execute('''SELECT latitude, longitude, area, rent FROM listings
WHERE (latitude NOT NULL) AND (number NOT NULL);''')
data = [(round(row[0], 5), round(row[1], 5), round(row[3] / row[2], 1))
for row in c]
dump_json(data, filename)
def row_to_dict(row):
"""
Convert a ``sqlite3.Row`` instance to a dictionary.
"""
return {k: row[k] for k in row.keys()}
def export_data_to_json(db, filename):
"""
Export raw data to JSON.
"""
logger.info('Exporting raw data to JSON file "%s".' % filename)
c = db.cursor()
c.execute('SELECT * FROM listings;')
data = [row_to_dict(row) for row in c]
dump_json(data, filename)
try:
with prepare_database(args.database) as db:
get_new_listings(db)
add_coordinates(db)
mkdirs(args.export_dir)
export_markers_to_json(db, marker_filename)
export_data_to_json(db, data_filename)
except Exception as e:
logger.exception(e)
logger.info('Finished')