-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
529 lines (415 loc) · 26.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# Author: Anurag Ranjan
# Copyright (c) 2019, Anurag Ranjan
# All rights reserved.
# based on github.com/ClementPinard/SfMLearner-Pytorch
import argparse
import time
import csv
import datetime
import os
import warnings
import numpy as np
import torch
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torch.optim
import torch.nn as nn
import torch.utils.data
import custom_transforms
import models
from utils import tensor2array, save_checkpoint
from inverse_warp import inverse_warp, inverse_warp_wmove, pose2flow, flow2oob, flow_warp, pose2flow_wmove
from loss_functions import *
from logger import TermLogger, AverageMeter
from path import Path
from itertools import chain
from tensorboardX import SummaryWriter
from flowutils.flowlib import flow_to_image
epsilon = 1e-8
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser(description='Occlusion Aware Unsupervised Learning of Optical Flow From Video',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--kitti-dir', dest='kitti_dir', type=str, default='kitti/kitti2015',
help='Path to kitti2015 scene flow dataset for optical flow validation')
parser.add_argument('--DEBUG', action='store_true', help='DEBUG Mode')
parser.add_argument('--name', dest='name', type=str, default='demo', required=True,
help='name of the experiment, checpoints are stored in checpoints/name')
parser.add_argument('--dataset-format', default='sequential', metavar='STR',
help='dataset format, stacked: stacked frames (from original TensorFlow code) \
sequential: sequential folders (easier to convert to with a non KITTI/Cityscape dataset')
parser.add_argument('--sequence-length', type=int, metavar='N', help='sequence length for training', default=3)
parser.add_argument('--rotation-mode', type=str, choices=['euler', 'quat'], default='euler',
help='rotation mode for PoseExpnet : euler (yaw,pitch,roll) or quaternion (last 3 coefficients)')
parser.add_argument('--padding-mode', type=str, choices=['zeros', 'border'], default='zeros',
help='padding mode for image warping : this is important for photometric differenciation when going outside target image.'
' zeros will null gradients outside target image.'
' border will only null gradients of the coordinate outside (x or y)')
parser.add_argument('--with-depth-gt', action='store_true', help='use ground truth for depth validation. \
You need to store it in npy 2D arrays see data/kitti_raw_loader.py for an example')
parser.add_argument('--with-flow-gt', action='store_true', help='use ground truth for flow validation. \
see data/validation_flow for an example')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--epoch-size', default=0, type=int, metavar='N',
help='manual epoch size (will match dataset size if not set)')
parser.add_argument('-b', '--batch-size', default=4, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=2e-4, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum for sgd, alpha parameter for adam')
parser.add_argument('--beta', default=0.999, type=float, metavar='M',
help='beta parameters for adam')
parser.add_argument('--weight-decay', '--wd', default=0, type=float,
metavar='W', help='weight decay')
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--smoothness-type', dest='smoothness_type', type=str, default='edgeaware', choices=['edgeaware', 'regular'],
help='edgeaware regular')
parser.add_argument('--data-normalization', dest='data_normalization', type=str, default='global', choices=['local', 'global'],
help='Compute mean-std locally or globally')
parser.add_argument('--nlevels', dest='nlevels', type=int, default=1,
help='number of levels in multiscale. Options: 6')
parser.add_argument('--flownet', dest='flownet', type=str, default='FlowNetS', choices=['Back2Future', 'FlowNetC6','UnFlow','Back2FutureS'],
help='flow network architecture. Options: FlowNetC6 | Back2Future')
parser.add_argument('--pretrained-flow', dest='pretrained_flow', default=None, metavar='PATH',
help='path to pre-trained Flow net model')
parser.add_argument('--spatial-normalize', dest='spatial_normalize', action='store_true', help='spatially normalize depth maps')
parser.add_argument('--robust', dest='robust', action='store_true', help='train using robust losses')
parser.add_argument('--min', dest='min', action='store_true', help='train using min losses')
parser.add_argument('--no-non-rigid-mask', dest='no_non_rigid_mask', action='store_true', help='will not use mask on loss of non-rigid flow')
parser.add_argument('--joint-mask-for-depth', dest='joint_mask_for_depth', action='store_true', help='use joint mask from masknet and consensus mask for depth training')
parser.add_argument('--fix-flownet', dest='fix_flownet', action='store_true', help='do not train flownet')
parser.add_argument('--alternating', dest='alternating', action='store_true', help='minimize only one network at a time')
parser.add_argument('--clamp-masks', dest='clamp_masks', action='store_true', help='threshold masks for training')
parser.add_argument('--fix-posemasknet', dest='fix_posemasknet', action='store_true', help='fix pose and masknet')
parser.add_argument('--seed', default=0, type=int, help='seed for random functions, and network initialization')
parser.add_argument('--log-summary', default='progress_log_summary.csv', metavar='PATH',
help='csv where to save per-epoch train and valid stats')
parser.add_argument('--log-full', default='progress_log_full.csv', metavar='PATH',
help='csv where to save per-gradient descent train stats')
parser.add_argument('-qch', '--qch', type=float, help='q value for charbonneir', metavar='W', default=0.5)
parser.add_argument('-wrig', '--wrig', type=float, help='consensus imbalance weight', metavar='W', default=1.0)
parser.add_argument('-wbce', '--wbce', type=float, help='weight for binary cross entropy loss', metavar='W', default=0.5)
parser.add_argument('-wssim', '--wssim', type=float, help='weight for ssim loss', metavar='W', default=0.0)
parser.add_argument('-wconsis', '--wconsis', type=float, help='weight for consistancy loss', metavar='W', default=0.0)
parser.add_argument('-pc', '--cam-photo-loss-weight', type=float, help='weight for camera photometric loss for rigid pixels', metavar='W', default=1)
parser.add_argument('-pf1st', '--flow-photo-loss-weight-first', type=float, help='weight for photometric loss for non rigid optical flow first order', metavar='W', default=0.03)
parser.add_argument('-pf2nd', '--flow-photo-loss-weight-second', type=float, help='weight for photometric loss for non rigid optical flow second order', metavar='W', default=3.0)
parser.add_argument('-cv', '--velocity-consis-loss-weight', type=float, help='weight for cv loss for non rigid optical flow', metavar='W', default=1)
parser.add_argument('-m', '--mask-loss-weight', type=float, help='weight for explainabilty mask loss', metavar='W', default=0)
parser.add_argument('-s1st', '--smooth-loss-weight-first', type=float, help='weight for disparity smoothness loss first order', metavar='W', default=0.1)
parser.add_argument('-s2nd', '--smooth-loss-weight-second', type=float, help='weight for disparity smoothness loss second order', metavar='W', default=0.1)
parser.add_argument('-dc', '--depth-consis-weight', type=float, help='weight for disparity smoothness loss', metavar='W', default=0.1)
parser.add_argument('-dfc', '--consensus-loss-weight', type=float, help='weight for mask consistancy', metavar='W', default=0.1)
parser.add_argument('-a', '--alpha', type=float, help='weight for edge aware', metavar='W', default=10)
parser.add_argument('-epi', '--epipolar-loss-weight', type=float, help='weight for mask consistancy', metavar='W', default=0.01)
parser.add_argument('-tri', '--triangulation-loss-weight', type=float, help='weight for mask consistancy', metavar='W', default=0.01)
parser.add_argument('--THRESH', '--THRESH', type=float, help='threshold for masks', metavar='W', default=0.01)
parser.add_argument('--lambda-oob', type=float, help='weight on the out of bound pixels', default=0)
parser.add_argument('--log-output', action='store_true', help='will log dispnet outputs and warped imgs at validation step')
parser.add_argument('--log-terminal', action='store_true', help='will display progressbar at terminal')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('-f', '--training-output-freq', type=int, help='frequence for outputting dispnet outputs and warped imgs at training for all scales if 0 will not output',
metavar='N', default=0)
parser.add_argument('--with-mask', type=bool, metavar='W', default=True, choices=[True, False],
help='with the the mask for moving objects and occlusions or not')
parser.add_argument('--with-ssim', type=bool, metavar='W', default=True, choices=[True, False],
help='with the the mask for moving objects and occlusions or not')
best_error = -1
n_iter = 0
def main():
global args, best_error, n_iter
args = parser.parse_args()
if args.dataset_format == 'stacked':
from datasets.stacked_sequence_folders import SequenceFolder
elif args.dataset_format == 'sequential':
from datasets.sequence_folders import SequenceFolder
save_path = Path(args.name)
args.save_path = 'checkpoints'/save_path #/timestamp
print('=> will save everything to {}'.format(args.save_path))
args.save_path.makedirs_p()
torch.manual_seed(args.seed)
if args.alternating:
args.alternating_flags = np.array([False,False,True])
training_writer = SummaryWriter(args.save_path)
output_writers = []
if args.log_output:
for i in range(3):
output_writers.append(SummaryWriter(args.save_path/'valid'/str(i)))
# Data loading code
flow_loader_h, flow_loader_w = 256, 832
if args.data_normalization =='global':
normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
elif args.data_normalization =='local':
normalize = custom_transforms.NormalizeLocally()
train_transform = custom_transforms.Compose([
custom_transforms.RandomHorizontalFlip(),
custom_transforms.RandomScaleCrop(),
custom_transforms.ArrayToTensor(),
normalize
])
valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize])
valid_flow_transform = custom_transforms.Compose([custom_transforms.Scale(h=flow_loader_h, w=flow_loader_w),
custom_transforms.ArrayToTensor(), normalize])
print("=> fetching scenes in '{}'".format(args.data))
train_set = SequenceFolder(
args.data,
transform=train_transform,
seed=args.seed,
train=True,
sequence_length=args.sequence_length
)
# if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping
val_set = SequenceFolder(
args.data,
transform=valid_transform,
seed=args.seed,
train=False,
sequence_length=args.sequence_length,
)
if args.with_flow_gt:
from datasets.validation_flow import ValidationFlow
val_flow_set = ValidationFlow(root=args.kitti_dir,
sequence_length=args.sequence_length, transform=valid_flow_transform)
if args.DEBUG:
train_set.__len__ = 32
train_set.samples = train_set.samples[:32]
print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes)))
print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes)))
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
val_loader = torch.utils.data.DataLoader(
val_set, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True, drop_last=True)
if args.with_flow_gt:
val_flow_loader = torch.utils.data.DataLoader(val_flow_set, batch_size=1, # batch size is 1 since images in kitti have different sizes
shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=True)
if args.epoch_size == 0:
args.epoch_size = len(train_loader)
# create model
print("=> creating model")
if args.flownet=='SpyNet':
flow_net = getattr(models, args.flownet)(nlevels=args.nlevels, pre_normalization=normalize).cuda()
else:
flow_net = getattr(models, args.flownet)(nlevels=args.nlevels).cuda()
# load pre-trained weights
if args.pretrained_flow:
print("=> using pre-trained weights for FlowNet")
weights = torch.load(args.pretrained_flow)
flow_net.load_state_dict(weights['state_dict'])
# else:
#flow_net.init_weights()
if args.resume:
print("=> resuming from checkpoint")
flownet_weights = torch.load(args.save_path/'flownet_checkpoint.pth.tar')
flow_net.load_state_dict(flownet_weights['state_dict'])
# import ipdb; ipdb.set_trace()
cudnn.benchmark = True
flow_net = torch.nn.DataParallel(flow_net)
print('=> setting adam solver')
parameters = chain(flow_net.parameters())
optimizer = torch.optim.Adam(parameters, args.lr,
betas=(args.momentum, args.beta),
weight_decay=args.weight_decay)
milestones = [300]
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)
if args.min:
print("using min method")
if args.resume and (args.save_path/'optimizer_checkpoint.pth.tar').exists():
print("=> loading optimizer from checkpoint")
optimizer_weights = torch.load(args.save_path/'optimizer_checkpoint.pth.tar')
optimizer.load_state_dict(optimizer_weights['state_dict'])
with open(args.save_path/args.log_summary, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'validation_loss'])
with open(args.save_path/args.log_full, 'w') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow(['train_loss', 'photo_cam_loss', 'photo_flow_loss', 'explainability_loss', 'smooth_loss'])
if args.log_terminal:
logger = TermLogger(n_epochs=args.epochs, train_size=min(len(train_loader), args.epoch_size), valid_size=len(val_loader))
logger.epoch_bar.start()
else:
logger=None
for epoch in range(args.epochs):
scheduler.step()
if args.fix_flownet:
for fparams in flow_net.parameters():
fparams.requires_grad = False
if args.log_terminal:
logger.epoch_bar.update(epoch)
logger.reset_train_bar()
# train for one epoch
train_loss = train(train_loader, flow_net, optimizer, args.epoch_size, logger, training_writer)
if args.log_terminal:
logger.train_writer.write(' * Avg Loss : {:.3f}'.format(train_loss))
logger.reset_valid_bar()
if args.with_flow_gt:
flow_errors, flow_error_names = validate_flow_with_gt(val_flow_loader, flow_net, epoch, logger, output_writers)
error_string = ', '.join('{} : {:.3f}'.format(name, error) for name, error in zip(flow_error_names, flow_errors))
if args.log_terminal:
logger.valid_writer.write(' * Avg {}'.format(error_string))
else:
print('Epoch {} completed'.format(epoch))
for error, name in zip(flow_errors, flow_error_names):
training_writer.add_scalar(name, error, epoch)
decisive_error = flow_errors[0]
if best_error < 0:
best_error = decisive_error
# remember lowest error and save checkpoint
is_best = decisive_error <= best_error
best_error = min(best_error, decisive_error)
save_checkpoint(
args.save_path, {
'epoch': epoch + 1,
'state_dict': flow_net.module.state_dict()
}, {
'epoch': epoch + 1,
'state_dict': optimizer.state_dict()
},
is_best)
with open(args.save_path/args.log_summary, 'a') as csvfile:
writer = csv.writer(csvfile, delimiter='\t')
writer.writerow([train_loss, decisive_error])
if args.log_terminal:
logger.epoch_bar.finish()
def train(train_loader, flow_net, optimizer, epoch_size, logger=None, train_writer=None):
global args, n_iter
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter(precision=4)
# switch to train mode
flow_net.train()
end = time.time()
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
tgt_img_var = Variable(tgt_img.cuda())
ref_imgs_var = [Variable(img.cuda()) for img in ref_imgs]
if args.flownet == 'Back2Future':
flow_fwd, flow_bwd = flow_net(tgt_img_var, ref_imgs_var)
else:
flow_fwd = flow_net(tgt_img_var, ref_imgs_var[1])
flow_bwd = flow_net(tgt_img_var, ref_imgs_var[0])
loss_smooth = torch.zeros(1).cuda()
loss_flow_recon = torch.zeros(1).cuda()
loss_velocity_consis = torch.zeros(1).cuda()
if args.flow_photo_loss_weight_first:
if args.min:
loss_flow_recon += args.flow_photo_loss_weight_first*photometric_flow_min_loss(tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd],
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
else:
loss_flow_recon += args.flow_photo_loss_weight_first*photometric_flow_loss(tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd],
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
if args.flow_photo_loss_weight_second:
if args.min:
loss_per, loss_weight= photometric_flow_gradient_min_loss(tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd],
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
loss_flow_recon += args.flow_photo_loss_weight_second * loss_per
else:
loss_flow_recon += args.flow_photo_loss_weight_second*photometric_flow_gradient_loss(tgt_img_var, ref_imgs_var, [flow_bwd, flow_fwd],
lambda_oob=args.lambda_oob, qch=args.qch, wssim=args.wssim)
if args.smooth_loss_weight_first:
if args.smoothness_type == "regular":
loss_smooth += args.smooth_loss_weight_first*(smooth_loss(flow_fwd) + smooth_loss(flow_bwd))
elif args.smoothness_type == "edgeaware":
loss_smooth += args.smooth_loss_weight_first*(edge_aware_smoothness_loss(tgt_img_var, flow_fwd)+edge_aware_smoothness_loss(tgt_img_var, flow_bwd))
if args.smooth_loss_weight_second:
if args.smoothness_type == "regular":
loss_smooth += args.smooth_loss_weight_second*(smooth_loss(flow_fwd) + smooth_loss(flow_bwd))
elif args.smoothness_type == "edgeaware":
loss_smooth = args.smooth_loss_weight_second*(edge_aware_smoothness_second_order_loss_change_weight(tgt_img_var, flow_bwd, args.alpha)\
+ edge_aware_smoothness_second_order_loss_change_weight(tgt_img_var, flow_fwd, args.alpha))
if args.velocity_consis_loss_weight:
loss_velocity_consis = args.velocity_consis_loss_weight*flow_velocity_consis_loss( [flow_bwd, flow_fwd])
loss = loss_smooth + loss_flow_recon + loss_velocity_consis
if i > 0 and n_iter % args.print_freq == 0:
train_writer.add_scalar('flow_photometric_error', loss_flow_recon.item(), n_iter)
train_writer.add_scalar('flow_smoothness_loss', loss_smooth.item(), n_iter)
train_writer.add_scalar('velocity_consis_loss', loss_velocity_consis.item(), n_iter)
train_writer.add_scalar('total_loss', loss.item(), n_iter)
if args.training_output_freq > 0 and n_iter % args.training_output_freq == 0:
train_writer.add_image('train Input', tensor2array(tgt_img[0]), n_iter)
train_writer.add_image('train Flow FWD Output',flow_to_image(tensor2array(flow_fwd[0].data[0].cpu())) , n_iter )
train_writer.add_image('train Flow BWD Output',flow_to_image(tensor2array(flow_bwd[0].data[0].cpu())) , n_iter )
loss_weight_bwd = loss_weight[0][0,0,:,:].unsqueeze(0)
loss_weight_fwd = loss_weight[0][0,1,:,:].unsqueeze(0)
train_writer.add_image('loss_weight_bwd', tensor2array(loss_weight_bwd.data[0].cpu(), max_value=None, colormap='bone'), n_iter)
train_writer.add_image('loss_weight_fwd', tensor2array(loss_weight_fwd.data[0].cpu(), max_value=None, colormap='bone'), n_iter)
train_writer.add_image('train Flow FWD error Image',tensor2array(flow_warp(tgt_img_var-ref_imgs_var[1],flow_fwd[0]).data[0].cpu()) , n_iter )
train_writer.add_image('train Flow BWD error Image',tensor2array(flow_warp(tgt_img_var-ref_imgs_var[0],flow_bwd[0]).data[0].cpu()) , n_iter )
# record loss and EPE
losses.update(loss.item(), args.batch_size)
# compute gradient and do Adam step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.log_terminal:
logger.train_bar.update(i+1)
if i % args.print_freq == 0:
logger.train_writer.write('Train: Time {} Data {} Loss {}'.format(batch_time, data_time, losses))
if i >= epoch_size - 1:
break
n_iter += 1
return losses.avg[0]
def validate_flow_with_gt(val_loader, flow_net, epoch, logger, output_writers=[]):
global args
batch_time = AverageMeter()
error_names = ['epe_total', 'epe_rigid', 'epe_non_rigid', 'outliers']
errors = AverageMeter(i=len(error_names))
log_outputs = len(output_writers) > 0
# switch to evaluate mode
flow_net.eval()
end = time.time()
for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv, flow_gt, obj_map_gt) in enumerate(val_loader):
tgt_img_var = Variable(tgt_img.cuda(), volatile=True)
ref_imgs_var = [Variable(img.cuda(), volatile=True) for img in ref_imgs]
flow_gt_var = Variable(flow_gt.cuda(), volatile=True)
obj_map_gt_var = Variable(obj_map_gt.cuda(), volatile=True)
if args.flownet == 'Back2Future':
flow_fwd, flow_bwd= flow_net(tgt_img_var, ref_imgs_var)
else:
flow_fwd = flow_net(tgt_img_var, ref_imgs_var[1])
flow_bwd = flow_net(tgt_img_var, ref_imgs_var[0])
if args.DEBUG:
flow_fwd_x = flow_fwd[:,0].view(-1).abs().data
flow_gt_var_x = flow_gt_var[:,0].view(-1).abs().data
flow_fwd_non_rigid = flow_fwd
total_flow = flow_fwd
obj_map_gt_var_expanded = obj_map_gt_var.unsqueeze(1).type_as(flow_fwd)
if log_outputs and i % 10 == 0 and i/10 < len(output_writers):
index = int(i//10)
if epoch == 0:
output_writers[index].add_image('val flow Input', tensor2array(tgt_img[0]), 0)
flow_to_show = flow_gt[0][:2,:,:].cpu()
output_writers[index].add_image('val target Flow', flow_to_image(tensor2array(flow_to_show)), epoch)
output_writers[index].add_image('val Non-rigid Flow Output', flow_to_image(tensor2array(flow_fwd_non_rigid.data[0].cpu())), epoch)
if np.isnan(flow_gt.sum().item()) or np.isnan(total_flow.data.sum().item()):
print('NaN encountered')
_epe_errors = compute_all_epes(flow_gt_var, flow_fwd, flow_fwd, (1-obj_map_gt_var_expanded) )
errors.update(_epe_errors)
batch_time.update(time.time() - end)
end = time.time()
if args.log_terminal:
logger.valid_bar.update(i)
if i % args.print_freq == 0:
logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
if args.log_terminal:
logger.valid_bar.update(len(val_loader))
return errors.avg, error_names
if __name__ == '__main__':
import sys
with open("experiment_recorder.md", "a") as f:
f.write('\n python3 ' + ' '.join(sys.argv))
main()