-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgcn-ogbn-proteins.py
192 lines (152 loc) · 6.33 KB
/
gcn-ogbn-proteins.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
""" adapted from https://github.com/snap-stanford/ogb/blob/master/examples/nodeproppred/proteins/gnn.py """
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, JumpingKnowledge
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from logger import Logger
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCN, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(
GCNConv(in_channels, hidden_channels, normalize=False))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, normalize=False))
self.convs.append(
GCNConv(hidden_channels, out_channels, normalize=False))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
def forward(self, x, adj_t):
for conv in self.convs[:-1]:
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x
class GCNJK(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCNJK, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(
GCNConv(in_channels, hidden_channels, normalize=False))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, normalize=False))
self.convs.append(
GCNConv(hidden_channels, hidden_channels, normalize=False))
self.dropout = dropout
self.jump = JumpingKnowledge('max')
self.final_project = nn.Linear(hidden_channels, out_channels)
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
self.final_project.reset_parameters()
def forward(self, x, adj_t):
xs = []
for conv in self.convs[:-1]:
x = conv(x, adj_t)
x = F.relu(x)
xs.append(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
xs.append(x)
x = self.jump(xs)
x = self.final_project(x)
return x
def train(model, data, train_idx, optimizer):
model.train()
criterion = torch.nn.BCEWithLogitsLoss()
optimizer.zero_grad()
out = model(data.x, data.adj_t)[train_idx]
loss = criterion(out, data.y[train_idx].to(torch.float))
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data, split_idx, evaluator):
model.eval()
y_pred = model(data.x, data.adj_t)
train_rocauc = evaluator.eval({
'y_true': data.y[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['rocauc']
valid_rocauc = evaluator.eval({
'y_true': data.y[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['rocauc']
test_rocauc = evaluator.eval({
'y_true': data.y[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['rocauc']
return train_rocauc, valid_rocauc, test_rocauc
def main():
parser = argparse.ArgumentParser(description='OGBN-Proteins (GNN)')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--use_sage', action='store_true')
parser.add_argument('--method', type=str, default='gcn')
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=1000)
parser.add_argument('--eval_steps', type=int, default=5)
parser.add_argument('--runs', type=int, default=10)
args = parser.parse_args()
print(args)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
dataset = PygNodePropPredDataset(name='ogbn-proteins',
transform=T.ToSparseTensor())
data = dataset[0]
# Move edge features to node features.
data.x = data.adj_t.mean(dim=1)
data.adj_t.set_value_(None)
split_idx = dataset.get_idx_split()
train_idx = split_idx['train'].to(device)
if args.method == 'gcn':
model = GCN(data.num_features, args.hidden_channels, 112,
args.num_layers, args.dropout).to(device)
elif args.method == 'gcnjk':
model = GCNJK(data.num_features, args.hidden_channels, 112,
args.num_layers, args.dropout).to(device)
else:
raise ValueError('invalid method, use gcn or gcnjk')
# Pre-compute GCN normalization.
adj_t = data.adj_t.set_diag()
deg = adj_t.sum(dim=1).to(torch.float)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
adj_t = deg_inv_sqrt.view(-1, 1) * adj_t * deg_inv_sqrt.view(1, -1)
data.adj_t = adj_t
data = data.to(device)
evaluator = Evaluator(name='ogbn-proteins')
logger = Logger(args.runs, args)
for run in range(args.runs):
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
for epoch in range(1, 1 + args.epochs):
loss = train(model, data, train_idx, optimizer)
if epoch % args.eval_steps == 0:
result = test(model, data, split_idx, evaluator)
logger.add_result(run, result)
if epoch % args.log_steps == 0:
train_rocauc, valid_rocauc, test_rocauc = result
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'Train: {100 * train_rocauc:.2f}%, '
f'Valid: {100 * valid_rocauc:.2f}% '
f'Test: {100 * test_rocauc:.2f}%')
logger.print_statistics(run)
logger.print_statistics()
if __name__ == "__main__":
main()