-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathCHERICC.bsv
452 lines (430 loc) · 17.5 KB
/
CHERICC.bsv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*-
* Copyright (c) 2017-2019 Alexandre Joannou
* All rights reserved.
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory (Department of Computer Science and
* Technology) under DARPA contract HR0011-18-C-0016 ("ECATS"), as part of the
* DARPA SSITH research programme.
*
* @BERI_LICENSE_HEADER_START@
*
* Licensed to BERI Open Systems C.I.C. (BERI) under one or more contributor
* license agreements. See the NOTICE file distributed with this work for
* additional information regarding copyright ownership. BERI licenses this
* file to you under the BERI Hardware-Software License, Version 1.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
*
* http://www.beri-open-systems.org/legal/license-1-0.txt
*
* Unless required by applicable law or agreed to in writing, Work distributed
* under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, either express or implied. See the License for the
* specific language governing permissions and limitations under the License.
*
* @BERI_LICENSE_HEADER_END@
*/
package CHERICC;
import CHERICap :: *;
export CHERICCCap;
export CHERICCBounds;
`define div2(x) TDiv#(x, 2)
`define sub2(x) TSub#(x, 2)
`define i(x) valueOf(x)
// CHERICCBounds Bounds type
////////////////////////////////////////////////////////////////////////////////
// CHERICC compressed bounds type
typedef union tagged {
struct {
Bit#(1) lenMSB;
Bit#(`sub2(base_)) top;
Bit#(base_) base;
} Exp0;
struct {
Bit#(TSub#(`sub2(base_), `div2(e_))) top;
Bit#(TSub#(base_, `div2(e_))) base;
Bit#(e_) e;
} EmbeddedExp;
struct {
Bit#(TSub#(`sub2(base_), TAdd#(`div2(t_), `div2(e_)))) top;
Bit#(TSub#(base_, TAdd#(`div2(t_), `div2(e_)))) base;
Bit#(t_) otype;
Bit#(e_) e;
} Sealed;
} CHERICCBounds#(numeric type base_, numeric type e_, numeric type t_);
instance Bits#(CHERICCBounds#(b_, e_, t_), TMul#(b_, 2)) provisos(
// in pack
Add#(TDiv#(e_, 2), a__, e_), // truncates on e
Add#(TDiv#(t_, 2), b__, t_), // truncates on t
Add#(2, c__, b_), // 2 bits stolen from top
// in unpack
Add#(d__, TDiv#(e_, 2), TMul#(b_, 2)), // truncates raw into e
Add#(e__, TDiv#(t_, 2), TMul#(b_, 2)), // truncates raw into t
Add#(2, f__, TSub#(
TSub#(
TAdd#(b_,
TAdd#(
TDiv#(t_, 2),
TDiv#(e_, 2))),
TDiv#(e_, 2)),
TDiv#(t_, 2)))
);
function pack(ccbounds) =
case (ccbounds) matches
tagged Exp0 .x: return {{{1'b0, x.lenMSB}, x.top}, x.base};
tagged EmbeddedExp .x: begin
Bit#(`div2(e_)) eHi = truncateLSB(x.e);
Bit#(`div2(e_)) eLo = truncate(x.e);
return {{2'b10, x.top, eHi}, {x.base, eLo}};
end
tagged Sealed .x: begin
Bit#(`div2(t_)) tHi = truncateLSB(x.otype);
Bit#(`div2(t_)) tLo = truncate(x.otype);
Bit#(`div2(e_)) eHi = truncateLSB(x.e);
Bit#(`div2(e_)) eLo = truncate(x.e);
return {{2'b11, x.top, tHi, eHi}, {x.base, tLo, eLo}};
/*
Bit#(TMul#(b_, 2)) acc = 0;
acc = acc | zeroExtend(2'b11);
acc = (acc << `i(b_)-2-`i(t_)/2-`i(e_)/2) | zeroExtend(x.top);
acc = (acc << `i(t_)/2) | zeroExtend(tHi);
acc = (acc << `i(e_)/2) | zeroExtend(eHi);
acc = (acc << `i(b_)-`i(t_)/2-`i(e_)/2) | zeroExtend(x.base);
acc = (acc << `i(t_)/2) | zeroExtend(tLo);
acc = (acc << `i(e_)/2) | zeroExtend(eLo);
return acc;
*/
end
endcase;
function unpack(raw);
if (raw[2*`i(b_)-1] == 0) return Exp0 {
lenMSB: raw[2*`i(b_)-2],
top: raw[2*`i(b_)-3:`i(b_)],
base: raw[`i(b_)-1:0]
};
else if (raw[2*`i(b_)-2] == 0) begin
Bit#(`div2(e_)) eHi = truncate(raw >> `i(b_));
Bit#(`div2(e_)) eLo = truncate(raw);
// XXX Bit#(e_) new_e = {eHi, eLo}; XXX simpler provisos with equiv line below
Bit#(e_) new_e = zeroExtend(eLo) | zeroExtend(eHi) << `i(e_)/2;
return EmbeddedExp {
top: raw[2*`i(b_)-3:`i(b_)+`i(e_)/2],
base: raw[`i(b_)-1:`i(e_)/2],
e: new_e
};
end else begin
Bit#(`div2(t_)) tHi = truncate(raw >> (`i(b_)+(`i(e_)/2)));
Bit#(`div2(t_)) tLo = truncate(raw >> (`i(e_)/2));
// XXX Bit#(t_) new_t = {tHi, tLo}; XXX simpler provisos with equiv line below
Bit#(t_) new_t = zeroExtend(tLo) | zeroExtend(tHi) << `i(t_)/2;
Bit#(`div2(e_)) eHi = truncate(raw >> `i(b_));
Bit#(`div2(e_)) eLo = truncate(raw);
// XXX Bit#(e_) new_e = {eHi, eLo}; XXX simpler provisos with equiv line below
Bit#(e_) new_e = zeroExtend(eLo) | zeroExtend(eHi) << `i(e_)/2;
return Sealed {
top: raw[2*`i(b_)-3:`i(b_)+`i(e_)/2+`i(t_)/2],
base: raw[`i(b_)-1:`i(e_)/2+`i(t_)/2],
otype: new_t,
e: new_e
};
end
endfunction
endinstance
// CHERICC capability type
////////////////////////////////////////////////////////////////////////////////
`define CCSoftPerms Bit#(4)
`define AllPermsSz TAdd#(SizeOf#(`CCSoftPerms), SizeOf#(HardPerms))
typedef struct {
Bool isCap;
`CCSoftPerms softperms;
HardPerms hardperms;
Bit#(TSub#(addr_, TAdd#(bounds_, `AllPermsSz))) res; // 15 permission bits and bounds_ bits to deduct
CHERICCBounds#(`div2(bounds_), e_, t_) bounds;
Bit#(addr_) addr;
} CHERICCCap#(numeric type addr_, numeric type bounds_, numeric type e_, numeric type t_);
instance Bits#(CHERICCCap#(addr_, bounds_, e_, t_),
TAdd#(1, TAdd#(addr_, TAdd#(bounds_, TAdd#(res_, `AllPermsSz))))) provisos(
Bits#(CHERICCBounds#(TDiv#(bounds_, 2), e_, t_), bounds_),
Add#(TAdd#(bounds_, `AllPermsSz), res_, addr_)
);
function pack(cap);
Bit#(1) isCap = pack(cap.isCap);
Bit#(SizeOf#(`CCSoftPerms)) softperms = cap.softperms;
Bit#(SizeOf#(HardPerms)) hardperms = pack(cap.hardperms);
Bit#(res_) res = cap.res;
Bit#(bounds_) bounds = pack(cap.bounds);
Bit#(addr_) addr = cap.addr;
return {isCap, softperms, hardperms, res, bounds, addr};
endfunction
//function pack(cap) = {cap.softperms, pack(cap.perms), cap.res, pack(cap.bounds), cap.addr};
function unpack(raw) = CHERICCCap {
isCap: unpack(msb(raw)),
softperms: raw[2*`i(addr_)-1:2*`i(addr_)-`i(SizeOf#(`CCSoftPerms))],
hardperms: unpack(raw[2*`i(addr_)-5:2*`i(addr_)-`i(`AllPermsSz)]),
res: raw[2*`i(addr_)-`i(`AllPermsSz)-1:`i(addr_)+`i(bounds_)],
bounds: unpack(raw[`i(addr_)+`i(bounds_)-1:`i(addr_)]),
addr: raw[`i(addr_)-1:0]
};
endinstance
`undef AllPermsSz
`undef CCSoftPerms
// CHERICCCap inner helpers
////////////////////////////////////////////////////////////////////////////////
CHERICCCap#(addr_, bounds_, e_, t_) almightyCC = CHERICCCap {
isCap: True,
softperms: ~0,
hardperms: unpack(~0),
res: 0,
bounds: EmbeddedExp {
top: 0, // implied top bits of 01
base: 0,
// position the 1 of top in the addr_'th bit
e: fromInteger(`i(addr_)-((`i(bounds_)/2)-2))
},
addr: 0
};
CHERICCCap#(addr_, bounds_, e_, t_) nullCC = CHERICCCap {
isCap: False,
softperms: 0,
hardperms: unpack(0),
res: 0,
bounds: EmbeddedExp {
top: 0, // implied top bits of 01
base: 0,
e: fromInteger(`i(addr_)-((`i(bounds_)/2)-2)) // position the 1 of top in the addr_'th bit
},
addr: 0
};
function Bit#(e_) getExpCC(CHERICCCap#(addr_, bounds_, e_, t_) cap);
case (cap.bounds) matches
tagged Exp0 .b: return 0;
tagged EmbeddedExp .b: return b.e;
tagged Sealed .b: return b.e;
endcase
endfunction
function Bit#(3) getRepBoundCC(CHERICCCap#(addr_, bounds_, e_, t_) cap)
provisos (Add#(3, a__, `div2(bounds_))) =
truncateLSB(cap.bounds.Exp0.base) - 3'b001; // always 1/8th of representable space below object
function Int#(2) getRegionCorrectionCC(Bit#(3) a, Bit#(3) b, Bit#(3) rep) =
((b < rep) == (a < rep)) ? 0 : (((b < rep) && (a >= rep)) ? 1 : -1);
function Bit#(`div2(bounds_))
getTopFieldCC(CHERICCCap#(addr_, bounds_, e_, t_) cap);
Bit#(2) c_carry = 2'b00;
Bit#(2) c_len = 2'b01;
Bit#(`sub2(`div2(bounds_))) partialTop = 0;
case (cap.bounds) matches
tagged Exp0 .b: begin
if (zeroExtend(b.top) < b.base) c_carry = 2'b01;
c_len = {1'b0, b.lenMSB};
partialTop = b.top;
end
tagged EmbeddedExp .b: begin
if (zeroExtend(b.top) < b.base) c_carry = 2'b01;
partialTop = {b.top, 0};
end
tagged Sealed .b: begin
if (zeroExtend(b.top) < b.base) c_carry = 2'b01;
partialTop = {b.top, 0};
end
endcase
return {truncateLSB(cap.bounds.Exp0.base) + c_carry + c_len, partialTop};
endfunction
function Bit#(`div2(bounds_))
getBaseFieldCC(CHERICCCap#(addr_, bounds_, e_, t_) cap) =
case (cap.bounds) matches
tagged Exp0 .b: b.base;
tagged EmbeddedExp .b: {b.base, 0};
tagged Sealed .b: {b.base, 0};
endcase;
// CHERICCCap CHERICap instance
////////////////////////////////////////////////////////////////////////////////
instance CHERICap#(CHERICCCap#(addr_, bounds_, e_, t_), t_, addr_) provisos (
Add#(3, a__, `div2(bounds_)), // 3 bits of bounds for 1/8th of rep space
Add#(3, b__, addr_), // same for addr
Add#(c__, TAdd#(2, `div2(bounds_)), addr_), // for base correction
Add#(d__, TAdd#(2, `div2(bounds_)), TAdd#(addr_, 1)), // for top 2 bits of Int#(2) correction
Add#(e__, `div2(bounds_), addr_), // slice addr into smaller bounds field
Add#(f__, `div2(bounds_), TAdd#(addr_, 1)), // same for addr+1
Add#(g__, e_, TLog#(TAdd#(1, addr_))) // can fit result of countZerosMSB in e_
);
//////////////////////////////////////////////////////////////////////////////
function isValidCap(cap) = cap.isCap;
//////////////////////////////////////////////////////////////////////////////
function setValidCap(cap, v);
cap.isCap = v;
return cap;
endfunction
//////////////////////////////////////////////////////////////////////////////
function getHardPerms(cap) = cap.hardperms;
//////////////////////////////////////////////////////////////////////////////
function setHardPerms(cap, hardperms);
cap.hardperms = hardperms;
return cap;
endfunction
//////////////////////////////////////////////////////////////////////////////
function getSoftPerms(cap) = zeroExtend(cap.softperms);
//////////////////////////////////////////////////////////////////////////////
function setSoftPerms(cap, softperms);
cap.softperms = truncate(softperms);
return cap;
endfunction
//////////////////////////////////////////////////////////////////////////////
function getKind(cap) = case (cap.bounds) matches
tagged Sealed ._: return SEALED_WITH_TYPE;
default: return UNSEALED;
endcase;
//////////////////////////////////////////////////////////////////////////////
function getType(cap) = case (cap.bounds) matches
tagged Sealed .b: return zeroExtend(b.otype);
default: return -1;
endcase;
//////////////////////////////////////////////////////////////////////////////
function setType(cap, otype);
let new_cap = cap;
let isExact = True;
case (cap.bounds) matches
tagged Sealed .b: if (otype == -1) begin
//Bit#(addr_) addrBits = cap.address >> b.e;
//let baseMid = addrBits[`sub1(TAdd#(`div2(t_), `div2(e))):`div2(e_)];
//let baseLo = addrBits[`sub1(`div2(e_)):0];
//let topMid = baseMid;
//let topLo = baseLo;
let baseHi = b.base;
let topHi = b.top;
if (b.e == 0) new_cap.bounds = Exp0 {
lenMSB: 1,
top: {topHi, 0},
base: {baseHi, 0}
};
else new_cap.bounds = EmbeddedExp {
top: {topHi, 0},
base: {baseHi, 0},
e: b.e
};
end
default: if (otype != -1) begin
Bit#(e_) new_e = case (cap.bounds) matches
tagged EmbeddedExp .b: b.e;
default: 0;
endcase;
new_cap.bounds = Sealed {
top: truncateLSB(cap.bounds.Exp0.top),
base: truncateLSB(cap.bounds.Exp0.base),
otype: otype,
e: new_e
};
Bit#(`div2(t_)) zero = 0;
isExact = cap.bounds.Exp0.top[`i(t_)/2-1:0] == zero &&
cap.bounds.Exp0.base[`i(t_)/2-1:0] == zero;
end
endcase
return Exact{exact: isExact, value: new_cap};
endfunction
//////////////////////////////////////////////////////////////////////////////
function getAddr(cap) = cap.addr;
//////////////////////////////////////////////////////////////////////////////
function setAddr(cap) = error("setAddr unimplemented");
//////////////////////////////////////////////////////////////////////////////
function getOffset(cap) = zeroExtend(getAddr(cap)) - getBase(cap);
//////////////////////////////////////////////////////////////////////////////
function setOffset(cap, offset);
Bit#(`div2(bounds_)) e0m = ~(~0 << ((`i(t_)/2)+(`i(e_)/2)));
Bit#(TSub#(`div2(bounds_), `div2(e_))) eem = ~(~0 << (`i(t_)/2));
// extract specific useful values
Bit#(e_) e = getExpCC(cap);
Bit#(e_) almighty_e = fromInteger(`i(addr_)-((`i(bounds_)/2)-2)); // position the 1 of top in the addr_'th bit
Bit#(addr_) i = offset - getOffset(cap);
Bit#(`div2(bounds_)) imid = truncate(i >> e);
Bit#(`div2(bounds_)) amid = truncate(cap.addr >> e);
Bit#(`div2(bounds_)) r = {getRepBoundCC(cap), 0};
// perform inRange and inLimit tests
Bit#(addr_) mask = ~0 << (e + fromInteger(`i(bounds_)/2));
Bool inRange = ((i & mask) == mask) || ((i & mask) == 0);
Bool inLimits = (i >= 0) ? imid < (r - amid - 1) :
imid >= (r - amid) && r != amid;
Bool isExact = ((inRange && inLimits) || e >= almighty_e);
// perform the offset update
let new_cap = cap;
new_cap.addr = truncate(getBase(cap) + offset);
return Exact{exact: isExact, value: new_cap};
endfunction
//////////////////////////////////////////////////////////////////////////////
function getBase(cap);
let baseCC = getBaseFieldCC(cap);
let e = getExpCC(cap);
let correction = getRegionCorrectionCC(truncateLSB(cap.addr),
truncateLSB(baseCC),
getRepBoundCC(cap));
Bit#(addr_) mask = ~0 << (e + fromInteger(`i(bounds_)/2));
Bit#(addr_) acc = cap.addr & mask;
return acc + (signExtend({pack(correction), baseCC}) << e);
endfunction
//////////////////////////////////////////////////////////////////////////////
function getTop(cap);
let topCC = getTopFieldCC(cap);
let e = getExpCC(cap);
let correction = getRegionCorrectionCC(truncateLSB(cap.addr),
truncateLSB(topCC),
getRepBoundCC(cap));
Bit#(TAdd#(addr_, 1)) mask = ~0 << (e + fromInteger(`i(bounds_)/2));
Bit#(TAdd#(addr_, 1)) acc = zeroExtend(cap.addr) & mask;
return acc + (signExtend({pack(correction), topCC}) << e);
endfunction
//////////////////////////////////////////////////////////////////////////////
function getLength(cap) = getTop(cap) - zeroExtend(getBase(cap));
//////////////////////////////////////////////////////////////////////////////
function setBounds(cap, length);
let new_cap = cap;
let isExact = True;
// deriving new exponent
Bit#(TLog#(TAdd#(1, addr_))) e =
pack(fromInteger(`i(addr_))
- countZerosMSB(length >> ((`i(bounds_)/2)-1)));
// deriving the new base
Bit#(`div2(bounds_)) newBase = truncate(cap.addr >> e);
// deriving the new top
Bit#(TAdd#(addr_, 1)) fullTop = zeroExtend(cap.addr) + zeroExtend(length);
Bit#(`div2(bounds_)) newTop = truncate(fullTop >> e);
// fold the derived values back in the new cap
if (e == 0) begin
new_cap.bounds = Exp0 {
lenMSB: length[(`i(bounds_)/2)-2],
top: truncate(newTop),
base: newBase
};
end else begin
// slice the top and base values appropriately
Bit#(TSub#(`sub2(`div2(bounds_)), `div2(e_))) upperTop = truncateLSB(newTop);
Bit#(TSub#(`div2(bounds_), `div2(e_))) upperBase = truncateLSB(newBase);
// take care of loss of significant bits in the bits stolen/dropped from fullTop
Bit#(TAdd#(addr_, 1)) mask = ~(~0 << (e + fromInteger(`i(e_)/2)));
if ((fullTop & mask) != 0) upperTop = upperTop + 1;
new_cap.bounds = EmbeddedExp {
top: upperTop,
base: upperBase,
e: truncate(e)
};
// check for exact or not
Bit#(addr_) exactMask = ~(~0 << (e - fromInteger(`i(bounds_)/2 - `i(e_)/2 - 1)));
if ((cap.addr & exactMask) != 0) isExact = False;
if ((length & exactMask) != 0) isExact = False;
end
return Exact{exact: isExact, value: new_cap};
endfunction
//////////////////////////////////////////////////////////////////////////////
function nullWithAddr(x);
let cap = nullCap;
cap.addr = x;
return cap;
endfunction
//////////////////////////////////////////////////////////////////////////////
function almightyCap = almightyCC;
//////////////////////////////////////////////////////////////////////////////
function nullCap = nullCC;
//////////////////////////////////////////////////////////////////////////////
endinstance
`undef div2
`undef sub2
`undef i
endpackage