forked from brando90/Generalization-Puzzles-in-Deep-Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwnorms_vs_gen_error.m
97 lines (97 loc) · 4.85 KB
/
wnorms_vs_gen_error.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
clear;clc;
%% root folder names
dot = '/Users/brandomiranda/home_simulation_research/overparametrized_experiments/';
path_all_expts = fullfile(dot,'pytorch_experiments/test_runs_flatness5_ProperOriginalExpt');
%% experiment files names
list_names = [];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_NL_only_1st_layer_BIAS_True_batch_size_train_1024_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.0001_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.001_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.01_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.1_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.2_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.5_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_0.75_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
%name = "flatness_June_label_corrupt_prob_0.0_exptlabel_RLNL_1.0_only_1st_layer_BIAS_True_batch_size_train_256_lr_0.01_momentum_0.9_scheduler_milestones_200,250,300_gamma_1.0";list_names=[list_names, name];
%%
target_loss = 0.0044
%%
%[w_norms_means,w_norms_std, gen_errors_means,gen_errors_stds] = extract_w_norms_vs_gen_errors_results_stats(path_all_expts,list_names,target_loss);
%w_norms_means
%gen_errors_means
[w_all_norms, gen_errors] = extract_w_norms_vs_gen_errors_results(path_all_expts,list_names,target_loss);
%%
fig = figure;
scatter(w_all_norms,gen_errors);
%plot(w_norms_means,gen_errors_means)
%scatter(w_norms_means,gen_errors_means)
%%
% norm = 'forbenius_norm';
% xlabel('forbenius norm (of all weights): ||W||_F')
% title('forbenius norm ||W|| vs generalization error')
% lsline
%%
% norm = 'product_norm';
% xlabel('product norm: ||w_k||...||w_1||')
% title('product norm ||w_k||...||w_1|| vs generalization error')
%%
norm = 'log_product_norm';
xlabel('log of product norm: log||w_k||+...+log||w_1||')
title('log of product norm log||w_k||+...+log||w_1|| vs generalization error')
lsline
%%
ylabel('generalization error/test error')
%errorbar(w_norms_means,gen_errors_means,gen_errors_stds)
%% save figure
saveas(fig,['gen_w_norms' norm]);
saveas(fig,['gen_w_norms' norm],'pdf');
%% HELPER FUNCTIONS
function [w_all_norms, gen_all_errors] = extract_w_norms_vs_gen_errors_results(path_all_expts,list_names,target_loss)
w_all_norms = [];
gen_all_errors = [];
for name = list_names
path_to_folder_expts = fullfile(path_all_expts,name);
%% extra all data from experiments
[gen_errors, w_norms] = extract_results_with_target_loss(path_to_folder_expts,target_loss);
w_all_norms = [w_all_norms w_norms];
gen_all_errors = [gen_all_errors gen_errors];
end
end
%
function [gen_errors,w_norms_all] = extract_results_with_target_loss(path_to_folder_expts,target_loss)
gen_errors = [];
w_norms_all = [];
%%
path_plus_prefix_of_all_expts = fullfile(path_to_folder_expts,'/flatness_*');
expt_data_files = dir(path_plus_prefix_of_all_expts);
expt_data_filenames = {expt_data_files.name};
for expt_file_name = expt_data_filenames
%expt_file_name
path_to_data_file = fullfile(path_to_folder_expts,expt_file_name{1});
load(path_to_data_file)
%%
epoch = match_train_loss(target_loss,train_losses)
if epoch ~= -1
train_error = train_errors(epoch);
if train_error == 0
%w_norm = sum( w_norms(:,epoch).^2 )^0.5;
w1_norm = (w_norms(1,epoch)^2+w_norms(2,epoch)^2)^0.5;
w_norm = w1_norm*prod(w_norms(3:end,epoch));
w_norm = log(w_norm);
gen_error = test_errors(epoch)
gen_errors = [gen_errors gen_error];
w_norms_all = [w_norms_all w_norm];
end
end
end
end
%
function [epoch] = match_train_loss(target_loss,train_losses)
for epoch = 1:length(train_losses)
train_loss = train_losses(epoch);
if abs(target_loss-train_loss) < 0.0001 % catch 0.044 match 2 sign figs
return;
end
end
epoch = -1;
end